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a b s t r a c t

Uniform filter bank approach can be considered to perform independent component analysis (ICA) for

convolved mixtures. It achieves better separation performance than the frequency domain approach

and gives faster convergence speed with less computational complexity than the time domain

approach. However, when the uniform filter bank approach is applied to natural audio signals,

for high frequency subbands. Owing to spectral characteristics of natural signals, we present a filter

bank approach that employs a Bark-scale filter bank. In the Bark-scale filter bank, low frequency region

is minutely divided, whereas high frequency region has much wider subbands. The Bark-scale filter

bank approach shows faster convergence speed than the uniform filter bank approach because it has

more whitened inputs in the low frequency subbands. It also improves the separation performance as it

has enough data to train adaptive parameters exactly in the high frequency subbands.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Independent component analysis (ICA) is a signal processing
method to express multivariate data as linear combinations of
statistically independent random variables [1–3]. Resorting to
higher order statistics, ICA has achieved impressive performance
in many applications such as speech enhancement, telecommu-
nications, medical signal processing, and feature extraction [4–7].
However, ICA for acoustic mixtures still remains as a challenging
problem due to very complex reverberation involved with real-
world acoustic mixing environments. To deal with convolutive
mixtures of audio signals, some of the ICA approaches for
instantaneous mixtures have been traditionally extended in the
time domain [8] and the frequency domain [9–11]. Filter bank
approaches have been proposed to overcome disadvantages of the
time and frequency domain approaches [12–15]. A filter bank
approach proposed by Park et al. [12,13] does not have
performance limitation of the frequency domain approaches,
since the ICA algorithm in each subband is basically the same as
the time domain approach which is derived from the gradient of
the output entropy. Since adaptive filters process subband signals
at the decimated rate and the required adaptive filter length is
shortened by a factor of the decimation, the number of multi-
ll rights reserved.

+82 2 706 4216.
plications in a subband is reduced by a factor of 1=M2 where M is
the decimation factor. If the number of subbands is K, computa-
tions are mainly saved by a factor of K=M2 [16,17]. Furthermore,
decimation improves convergence of the subband adaptive filters
because subband signals are more whitened and the adaptive
filter length is shortened [13,16].

However, the uniform filter bank approaches do not consider
some properties of input signals. Fig. 1 shows the time-averaged
power spectral densities of three natural sounds in the frequency
domain which are used in the experiments. The energy of these
signals is concentrated in low frequency region and generally
decreases more steeply in low frequency region than in high
frequency region as the frequency increases. These characteristics
are commonly observed for most of the natural audio signals.
When a uniform filter bank approach deals with such audio
signals, it has more colored input signals in low frequency
subbands than in high frequency subbands. This may result in
relatively slower convergence for adaptation of ICA networks in
the low frequency subbands which contain most of the signal
energy. In addition, since audio signals have most energy in low
frequency region, data in the high frequency subbands may not be
enough to train adaptive filters exactly in the uniform filter bank
approach resulting in inferior separation performance.

Several papers have proposed the use of nonuniform filter
banks for adaptive filtering instead of uniform filter banks
[18–21]. Schulz and Herfet described a mask-based approach,
but it may provide inaccurate results because estimated masks

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2009.08.009
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Fig. 1. Time-averaged power spectral densities for three natural sounds in the

frequency domain.
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specify which time–frequency components should be selected or
not in a binary way [21]. On the other hand, Rutkowski et al.
employed nonuniform filter banks with center frequencies based
on estimation of a fundamental frequency [20]. However, the filter
banks were constructed from the fundamental frequency of a
speech signal with higher energy, so they may not be pertinent to
separate other signals with lower energy. In addition, if the
fundamental frequency is much changed, the filter banks also
need to be changed. In this case, separation filters in subbands
may have errors and should converge to another solution. The
others were applied to system identification problems which use
the least-mean-square (LMS) algorithm [18,19]. In those problems,
rapidly changing spectral regions of the system response have
narrow subbands, whereas smooth regions have wide subbands.
Therefore, a filter bank approach using this nonuniform filter bank
provides more uniform convergence speeds in all subbands than
the uniform filter bank approach. However, it is not suitable for
dealing with natural audio signals because we cannot know a

priori information about their detailed spectral characteristics, in
advance, which correspond to the time-invariant frequency
response of an identified system in the system identification
problems.

In this paper, a Bark-scale filter bank is considered to improve
convergence and separation performance of the filter bank
approach when applied to audio signals. It is known that the
Bark-scale filter bank has narrow subbands in low frequency
region and wide subbands in high frequency region. Also, its
frequency response resembles the mammalian cochlea [22]. By
employing this filter bank, we can attain faster convergence speed
than the uniform filter bank approach because it has more
whitened inputs in the low frequency subbands. It also gives
better separation performance because it trains adaptive para-
meters more exactly by using enough data in the high frequency
subbands. Although prewhitening of input signals may speed up
convergence as shown in [23], the approach was based on time-
averaged audio spectral characteristics. However, this could not
remove the detailed correlation which temporarily exists only at
an instance. Decimation of a filter bank is capable of removing
both the averaged and detailed correlations.

The remainder of the paper is organized as follows: Section 2
briefly reviews a filter bank approach to ICA for convolved
mixtures. In Section 3, our approach of utilizing nonuniform
filter banks is presented. This method is compared with the
corresponding uniform filter bank approach through several
experiments in Section 4. Finally, some concluding remarks are
presented in Section 5.
2. Review of a filter bank approach to ICA

Let us consider a set of unknown source signals, fsjðnÞ;

j¼ 1; . . . ;Ng, such that the signals are zero-mean and mutually
independent. If mixing involves convolution and time-delays,
an observation is

xiðnÞ ¼
XN

j ¼ 1

XLm�1

m ¼ 0

aijðmÞsjðn�mÞ; ð1Þ

where Lm and aijðmÞ denote a mixing filter length and a coefficient,
respectively [7].

To obtain the independent source signals from these observa-
tions, a filter bank approach can be considered as it shows better
separation performance than the frequency domain approach and
gives faster convergence with less computational complexity than
the time domain approach [12,13]. Among the filter bank
approaches, oversampled filter banks, where the decimation
factor is smaller than the number of analysis filters, accomplish
better performance than critically sampled filter banks. The
oversampled filter banks can have negligible aliasing when each
filter has a high stopband attenuation, so they make it possible to
perform adaptive filtering without requiring cross adaptive filters
between adjacent bands or distorting reconstructed signals
[17,24,25].

Since ICA is performed in the oversampled filter bank, adaptive
parameters in each subband can be adjusted without any
information from other subbands [12,13]. Thus, the filter bank
approach is appropriate for parallel processing. The inputs, which
are mixtures of unknown independent signals, are decomposed
into subband signals by analysis filters. Then, each subband signal
is downsampled by a decimation factor. Since the downsampled
signals are still convolved mixtures whose reverberation length
has decreased by the decimation factor, a typical ICA algorithm for
convolved mixtures can be used to obtain independent compo-
nents from the downsampled signals at each subband. Here, the
unmixing filter length is much shorter than that of the full-band
time domain approach. The outputs from the ICA network are
expanded, and the original independent signals can be recon-
structed from the subband outputs through synthesis filters after
fixing scaling and permutation.

As an ICA network in each subband, one may use a feedback
architecture [3,26] which is expressed as

uiðk;n
0Þ ¼

XLa

m0 ¼ 0

wiiðk;m
0Þxiðk;n

0 �m0Þ

þ
XN

j ¼ 1;ja i

XLa

m0 ¼ 1

wijðk;m
0Þujðk;n

0 �m0Þ; ð2Þ

where k and La denote subband index and adaptive filter length,
respectively. Usually, the length is shortened by a decimation
factor, comparing with that of the corresponding adaptive filters
in the full-band time domain approach. Here, adaptive filters
wijðk;m

0Þ force outputs uiðk;n
0Þ to reproduce the independent

subband signals. Among different algorithms to find out the
parameters, entropy maximization can provide a simple and
biologically plausible adaptive learning algorithm [8,13]:

wii newðk;0Þ

¼wii oldðk;0Þþmðk;n0Þ½1=w�ii oldðk;0Þ �jðuiðk;n
0ÞÞx�i ðk;n

0Þ�;
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wii newðk;m
0Þ

¼wii oldðk;m
0Þ � mðk;n0Þjðuiðk;n

0ÞÞx�i ðk;n
0 �m0Þ; m0a0;

wij newðk;m
0Þ

¼wij oldðk;m
0Þ � mðk;n0Þjðuiðk;n

0ÞÞu�j ðk;n
0 �m0Þ; ia j; ð3Þ

where mð�Þ denotes a step size and jð�Þ is called a score function.
Since subband signals are complex numbers, we use the polar-
coordinate-based score function [27]:

jðuiðk;n
0ÞÞ ¼ �

@pðjuiðk;n
0ÞjÞ

@juiðk;n0Þj
pðjuiðk;n0ÞjÞ

expðj �+uiðk;n
0ÞÞ; ð4Þ

where pðjuiðk;n
0ÞjÞ denotes the probability density function of

juiðk;n
0Þj.
3. ICA using Bark-scale oversampled filter banks

As mentioned in Section 1, the bandwidth of a filter bank
should increase as the subband center frequency increases to
avoid the undesired properties of the uniform filter bank approach
to ICA of audio signals. As the bandwidth increases, the
decimation factor should decrease to maintain negligible aliasing,
so the adaptive filters should have long lengths to cover a certain
time range. It is known that convergence of gradient-based
algorithms depends on the condition number which is the ratio
of the largest to the smallest eigenvalues of the correlation matrix
computed from the input vector1 [28]. By the Bordering theorem
[29], the condition number is a monotonically nondecreasing
function of filter length. Therefore, an increase of adaptive filter
length can only decrease the convergence speed but never
improve it [30].

Long adaptive filters should be avoided to prevent slow
convergence. Therefore, while doing subband division, which is
appropriate for ICA of audio signals, it is necessary to consider the
trade-off between the undesired properties of the uniform filter
bank approach and large adaptive filter length. By the trade-off,
one may have a filter bank which provides similar convergence
speeds for all subband adaptive filters.

Considering the trade-off, we use a Bark-scale filter bank [22]
as a nonuniform filter bank which is suitable for audio signals.
A wavelet filter bank [31] or an equivalent rectangular bandwidth
filter bank [32] also can be considered. Although the former has
been systematically and efficiently implemented in a form of a
critically sampled filter bank, it has too wide high frequency
subbands which may cause a slow convergence. In addition, the
latter is easily implemented by a Gammatone filter. However, the
filter has a wide transition band, which results in a relatively small
decimation factor to maintain negligible aliasing. For a Bark-scale
filter bank, the linear frequency o can be warped into the Bark
frequency O by

OðoÞ ¼ 6log
o

1200p þ
o

1200p

� �2

þ1

� �0:5
( )

; ð5Þ

where o is the angular frequency in rad/s [33]. By this frequency
warping, the filter bank approach which employs Bark-scale filter
banks speeds up the convergence of the parameters as it has more
whitened inputs in low frequency subbands. It also improves the
separation performance because it has enough data to train the
adaptive filters exactly in high frequency subbands.
1 The correlation matrix is defined as R¼ E½xiðk;n
0ÞxH

i ðk;n
0Þ�; where the input

vector xiðk;n
0Þ ¼ ½xiðk;n

0Þ; xiðk;n
0 � 1Þ; . . . ; xiðk;n

0 � LaÞ�
T .
In order to design a Bark-scale filter bank, we modified the
design methodology used for uniform complex-valued filter bank
[34], since it offers systematic formulation by a generalized
discrete Fourier transform (GDFT) and the number of total
subband samples is remarkably close to the critical decimation
[35]. Especially, the methodology enables flexible design using an
arbitrary cost function to build a Bark-scale filter bank with just a
few modifications as explained in the next paragraph. In the
method, the k th subband analysis filter hðk;nÞ is obtained from
the corresponding real-valued low-pass prototype filter qðk;nÞ by
a GDFT,

hðk;nÞ ¼ ej2pðFk=FsÞðn�ðLqk
�1Þ=2Þ

� qðk;nÞ;

k¼ 1;2; . . . ;K; n¼ 0;1; . . . ; Lqk
� 1; ð6Þ

where Fk; Fs, and Lqk
are the subband center frequency, sampling

frequency, and length of qðk;nÞ, respectively. Complex-conjugate
and time-reversed versions of the analysis filters are selected for
synthesis filters,

f ðk;nÞ ¼ ~hðk;nÞ ¼ h�ðk; Lmax � n� 1Þ; ð7Þ

where Lmax is the length of the prototype filter with maximum
taps. Contrary to a uniform filter bank, the bandwidth of an
analysis or synthesis filter in a subband is different from others.
Thus, we have to design different prototype filters for every
subbands.

The prototype filters can be designed by iterative least-square
algorithm with a cost function which considers reconstructiveness
and stopband attenuation. We may follow a detailed procedure
presented in [34] except for the following modifications. If
aliasing is sufficiently suppressed, the impulse response tðnÞ of
overall filter bank system can be written as a convolution of the
analysis and synthesis filters:

tðnÞ ¼
XK

k ¼ 1

1

Mk
hðk;nÞ � f ðk;nÞ: ð8Þ

Here, Mk denotes decimation factor at the k th subband. A
measure of the reconstruction error e1 can be evaluated by the
Euclidean distance between the impulse response, tðnÞ, and a
perfect delay, dðn� ðLmax � 1ÞÞ:

e1 ¼
X2Lmax�2

n ¼ 0

½tðnÞ � dðn� ðLmax � 1ÞÞ�2: ð9Þ

To measure the energy contained in the stopband of a linear phase
prototype filter, qðk;nÞ, a dense grid of frequency points fo0;o1;

. . . ;oPg covering the whole stopband is used for calculating

e2k
¼

1 � � � cosðw0 � ðLqk
� 1ÞÞ

1 � � � cosðw1 � ðLqk
� 1ÞÞ

^ & ^

1 � � � cosðwP � ðLqk
� 1ÞÞ

2
66664

3
77775

qðk;0Þ

qðk;1Þ

^

qðk; Lqk
� 1Þ

2
66664

3
77775

����������

����������

2

: ð10Þ

Therefore, the cost function to be minimized is a combination of
filter bank reconstruction error e1 and the stopband energies e2k

of
the prototype filters, which is

e¼ e1þg
XK

k ¼ 1

e2k
; ð11Þ

where g is a weighting factor. In order to compute the cost
function, we need to determine the subband center frequencies,
bandwidths, and decimation factors of the filters in advance. In a
Bark-scale filter bank, the center frequencies are related to the
bandwidths, and the decimation factors should be selected by
taking the bandwidths into account so as to have negligible
aliasing and reduced computational complexity. Thus, we first
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Fig. 3. Frequency responses of analysis filters of 16-channel oversampled filter

banks: (a) a Bark-scale filter bank and (b) a uniform filter bank.
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choose the number of filters, and then set the center frequencies,
bandwidths, and decimation factors for the filters at the same
time taking their relationships in consideration.

With a filter bank implemented by this method, a non-critical
decimation of subband signals can provide negligible aliasing and
make enough information available for successful adaptation in
every subband independently [12,13,16,36]. Therefore, an appro-
priate structure for the nonuniform filter bank approach to ICA
with two inputs and two outputs is shown in Fig. 2. The overall
procedure is almost the same as that of the uniform filter bank
approach. However, since nonuniform filter banks are used,
bandwidth of a subband is different from others. Therefore, the
decimation factor which makes aliasing error negligible in a
subband is also different from others. Similar to the uniform filter
bank approach, a feedback architecture can be considered for the
ICA network in each subband. The outputs are expressed as

uiðk;nkÞ ¼
XLak

mk ¼ 0

wiiðk;mkÞxiðk;nk �mkÞ

þ
XN

j ¼ 1;ja i

XLak

mk ¼ 1

wijðk;mkÞujðk;nk �mkÞ; ð12Þ

where uiðk;nkÞ; xiðk;nkÞ;wijðk;mkÞ, and Lak
represent the estimated

independent signals, input signals, adaptive filter coefficients, and
adaptive filter length in the k th subband, respectively. Entropy
maximization can be used for the adaptation of filters in each
subband, and the learning rules of the adaptive filter coefficients
are given as

wii newðk;0Þ

¼wii oldðk;0Þþmðk;nkÞ½1=w�ii oldðk;0Þ �jðuiðk;nkÞÞx
�
i ðk;nkÞ�;

wii newðk;mkÞ

¼wii oldðk;mkÞ � mðk;nkÞjðuiðk;nkÞÞx
�
i ðk;nk �mkÞ; mka0;

wij newðk;mkÞ

¼wij oldðk;mkÞ � mðk;nkÞjðuiðk;nkÞÞu
�
j ðk;nk �mkÞ; ia j: ð13Þ

We may use Eq. (4) to evaluate the score function jðuiðk;nkÞÞ.
Similar to the uniform filter bank approach, this method also

has indeterminacy of estimated outputs up to arbitrary filtering
for convolutive mixtures of temporally correlated audio signals.
Although entropy maximization attempts to make outputs
temporally whitened, it can be avoided by forcing direct filters
wiiðk;mkÞ to scaling factors while ICA is performed by a feedback
architecture.

In addition, scaling and permutation of the estimated outputs
in all subbands should be fixed because an ICA network in each
subband is independently adapted. Since audio signals usually
have time-varying statistical properties, we can employ a
modification of the Murata’s method which has been successfully
used in the uniform filter bank approach [12,13].

The main modification is as follows: The original Murata’s
method which was designed for a frequency domain approach
[37] sorts frequency bins in order of weakness of correlation
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(a) the uniform filter bank approach and (b) the Bark-scale filter bank approach.
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among envelopes of estimated independent components. For the
frequency bin which has the smallest correlation, its independent
components are assigned to specific outputs. Then, for frequency
bins sorted in the increasing order of the correlation, independent
components are assigned to the outputs that have more correla-
tion between envelopes of the frequency bin and averaged
envelopes of the former frequency bins. However, if the next
frequency bin is far from the former frequency bins, envelopes of
the frequency spectra may be very different even though they are
formed from the same source.

Therefore, we do not use this order to fix the permutation of
subbands in the filter bank approach except a subband which has
the smallest correlation. After assigning outputs for the subband
which has the smallest correlation, we perform assignments for
subbands adjacent to the previous subbands instead of the
subband which has the next smallest correlation. In addition,
when independent components are assigned to outputs in a
subband, we use correlation between envelopes of the subband
and weighted averages from envelopes of the previous subbands
with a forgetting factor. This will emphasize the envelopes of close
subbands. In this way, we may achieve more desirable results than
those obtained by the original Murata’s method [37], since the
envelopes from close subbands will be more similar than those
from distant subbands, and the indeterminacy of the filter bank
approach can be successfully solved [13].
If a mixing environment is static, one may employ a method
which exploits directivity patterns of sources to fix permutation
[38]. Taking non-stationarity of signals or the static nature of the
mixing environment into account, either permutation correction
method can be used.
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4. Experimental results

4.1. Design of filter banks

Fig. 3(a) shows the frequency response of analysis filters of a 16-
channel Bark-scale GDFT oversampled filter bank. The filter bank
was designed for subband center frequencies,
[109 328 578 906 1391 2156 3516 6203]Hz, at the 16-kHz sampling
rate with the corresponding decimation factors of
[22 22 20 18 14 11 7 3] in the lower half subbands. To reduce
computational loads, the decimation factors were the largest
integers which maintained negligible aliasing. The number of filters
was selected to offer reasonable decimation for whitening the inputs
in low frequency subbands and fairly sufficient data for training
adaptive filters. However, it was only a reasonable candidate and was
not tuned to the experimental data to show robustness on it. For
comparison, a uniform filter bank was also constructed as shown in
Fig. 3(b). In all subbands, the common decimation factor was 10.
All prototype filters to build both the filter banks had 220 taps.
The oversampling ratios, the ratios of the number of total samples in
all subbands to the corresponding original samples, were 167%
and 160%.
4.2. Preliminary experiments on adaptive noise canceling (ANC)

To verify several statements which motivate the nonuniform
filter bank approach, experiments on ANC were performed
because they avoid the ICA indeterminacy. ANC is an approach
to reduce noise based on reference signal [39]. In a typical ANC
system, the primary input signal is a combination of a signal sðnÞ

and a noise r0ðnÞ in which the signal sðnÞ is transmitted over a
channel from a signal source to a sensor and the noise r0ðnÞ is
added in the sensor from a noise source. Another sensor receives a
noise signal r1ðnÞ through another channel from the same noise
source, and this signal acts as the reference. The goal is to get a
system output uðnÞ in which noise components are removed as
much as possible. The ANC can be regarded as a special case of
blind source separation (BSS) where some source signals can be
obtained without being interfered by others. Adaptive filter
coefficients should be estimated to achieve this goal, where the
output uðnÞ is

uðnÞ ¼ sðnÞþr0ðnÞ �
XLa

m ¼ 1

wðmÞr1ðn�mÞ: ð14Þ
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Fig. 9. Experimental results of the filter bank approaches to ANC for car noise:

(a) SNR and (b) PESQ score.
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Fig. 10. Experimental results of the filter bank approaches to ANC for music noise:

(a) SNR and (b) PESQ score.
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Although the most popular algorithm for noise cancellation is
the LMS algorithm, performance of ANC systems can be improved
by ICA [40]. Furthermore, a filter bank approach can be applied to
the ANC system as a more efficient method [12]. The overall
structure for a filter bank approach to ANC is shown in Fig. 4.
Using entropy maximization technique, learning rules of adaptive
filter coefficients wðk;mkÞ can be derived as [12]

wnewðk;mkÞ ¼woldðk;mkÞþmðk;nkÞjðuðk;nkÞÞr
�
1ðk;nk �mkÞ: ð15Þ

In this approach, noise components in the primary input are
cancelled by the filtered reference signal in each subband, and the
adaptive filters do not introduce any distortions to the desired
signal components at the system output. Therefore, the filter bank
approach to ANC is not affected by the ICA indeterminacy.

To perform experiments on the ANC system with filter bank
approaches, two streams of speech were used as the signal and
noise sources. Each signal had 10-s length at the 16-kHz sampling
rate. It is known that speech signal approximately follows
Laplacian distribution. Thus, sgnðjujÞexpðj �+uÞ was used as the
score function jðuÞ, where sgnð�Þ denotes the signum function.
The mixing filters from the signal source to the primary input and
from the noise source to the reference input were simple linear
scales. The scale values were chosen to obtain desired initial SNRs.
For the mixing filter from the noise source to the primary input,
we have used a measured filter in a normal office room as shown
in Fig. 5.
Fig. 6 displays every other subband powers of residual noise
components in the process of cancellation with the filter bank
approaches using designed two filter banks. All of the powers
were normalized by total powers without cancellation. Since
speech has more energy in low frequency region than in high
frequency region, differences among the subband powers for the
uniform filter bank were much larger than those for the Bark-scale
filter bank. In addition, the residual powers for the Bark-scale
filter bank approach decreased at much more similar speeds in all
subbands than those for the uniform filter bank approach. On the
other hand, the first subband showed very slow decrease in the
residual power when the uniform filter bank was used for the
filter bank approach. It is consistent with the fact that the uniform
filter bank approach has more colored input signals in low
frequency subbands than in high frequency subbands.
Unfortunately, the first subband usually dominates convergence
speed of the uniform filter bank approach, since the subband has
most of the power.

To estimate the extents of decrease in residual noise compo-
nents with the filter bank approaches, a ratio of a subband power
of residual noise components after 150 sweeps to the correspond-
ing subband power of these components without cancellation was
computed in each subband and is shown in Fig. 7. The uniform
filter bank approach had difficulty in canceling many noise
components in high frequency subbands, whereas the Bark-scale
filter bank approach removed these noise components in rather
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similar ratios across subbands. It strengthens our argument that
data in high frequency subbands may not be sufficient to learn
adaptive filters exactly in the uniform filter bank approach.
Furthermore, it may cause performance degradation which is
magnified from the viewpoint of human perception.
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two microphone points.
The presented Bark-scale filter bank approach was compared
with the uniform filter bank approach in terms of signal-to-noise
ratio (SNR), which we define as a ratio of the signal power to the
noise power at the system output uðnÞ in the ANC system,

SNRðdBÞ ¼ 10log
/ðsðnÞÞ2S

/ðr0ðnÞ �
PLa

m ¼ 1 wðmÞr1ðn�mÞÞ2S
; ð16Þ

where / �S denotes an operator to return a time-averaged value
over a whole signal. In addition, perceptual evaluation of speech
quality (PESQ) score [41,42] was used to assess speech quality of
the output uðnÞ. Fig. 8 shows the experimental results. The number

of taps of adaptive filter coefficients was 1024
Mk

l m
in the k th subband.

For both the SNR and the PESQ score, the Bark-scale filter bank
approach provided faster convergence speed and higher SNRs or
PESQ scores than those of the uniform filter bank approach. This is
due to characteristics of natural audio signals. That is, the uniform
filter bank approach has more colored input signals than the Bark-
scale filter bank approach in low frequency subbands, and the
former provided inferior cancellation performances to the latter in
high frequency subbands. Figs. 9 and 10 also display experimental
results when a car noise or a music signal was used as the noise
source. These showed the same tendency.

4.3. Experiments on BSS

The two different filter bank approaches were compared
through experiments on BSS. For independent source signals,
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Fig. 13. Experimental results of the filter bank approaches to BSS for speech

sources: (a) SNR and (b) PESQ score.
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Fig. 14. Experimental results of the filter bank approaches to BSS for other sources:

(a) speech and car noise and (b) speech and music.
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we have used the same signals as in the previous experiment
except that each signal had 5-s length. To construct a 2� 2 mixing
system, impulse responses were generated by the image method,
which simulates acoustics between two points in a rectangular
room [43]. Figs. 11 and 12 show a virtual room to simulate the
impulse responses from two speaker points to two microphone
points and the resulting impulse responses, respectively. All
reflection coefficients were 0.6, and the reverberation time RT60

was 230 ms.
Fig. 13 shows experimental results when the two streams of

speech were used as sources. Using the speech sources, the score

function was sgnðjuijÞexpðj �+uiÞ. A feedback architecture was
used for the separation network in each subband, and each filter

of the feedback network in the k th subband had 2048
Mk

l m
taps.

Experimental results were compared in terms of signal-to-
interference ratio (SIR). For a 2� 2 mixing/unmixing system, the
SIR is defined as a ratio of the desired signal power to the
interference power at outputs [44],

SIRðdBÞ ¼
1

2
� 10log

/ðu1;s1
ðnÞÞ2S

/ðu1;s2
ðnÞÞ2S

�
/ðu2;s2

ðnÞÞ2S

/ðu2;s1
ðnÞÞ2S

 !�����
�����: ð17Þ

Here, ui;sj
ðnÞ denotes the i th output of the cascaded mixing/

unmixing system when only sjðnÞ is active. In addition, PESQ

scores averaged from the two outputs were also displayed in Fig.
13 to assess quality of recovered speech. As in the experiments on
ANC, the Bark-scale filter bank approach showed faster
convergence and gave better SIRs or PESQ scores than those of
the uniform filter bank approach.

Fig. 14 displays experimental results when a car noise or a
music signal replaced one of the source signals. Assuming that the
probability density functions of these signals can be approximated
by Gaussian distribution in each subband, a linear function was
used as the score function. Since a linear function may return
much larger values than sgnð�Þ and the values may be dominant
for adaptation of an ICA network, we have used jðuÞ ¼ u=5 as the
score function for signals normalized by estimated standard
deviations. The same tendency was observed in these curves as in
the previous results.
5. Concluding remarks

In this paper, we have described a Bark-scale filter bank
approach to ICA. By measuring subband noise powers in ANC, we
demonstrated that the Bark-scale filter bank approach provided
much more similar convergences and cancellation performances
in all subbands than the uniform filter bank approach. Especially,
experiments on BSS of audio signals demonstrated that the Bark-
scale filter bank approach achieved faster convergence speed and
better separation performances than the uniform filter bank
approach. The reason for performance improvements of the Bark-
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scale filter bank is due to more whitened input signals in low
frequency subbands and enough data in high frequency subbands.
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