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Abstract: There have been various loss functions proposed to improve the training of neural networks with 

sigmoid activation output nodes. For neural networks with softmax activation output nodes, the cross-entropy 

loss function is commonly used for training and several attempts have been made to improve the performance 

of such networks by modifying the standard cross-entropy loss. However, rather than simply aiming to improve 

overall classification accuracy, it is often necessary to address misclassification costs differently depending 

on their real-world importance. In practice, the cost of errors can vary greatly across domains such as finance, 

security, insurance, and healthcare. From this perspective, this paper proposes a modified cross-entropy loss 

function designed to control the training of neural networks with softmax output nodes. The effectiveness of 

the proposed loss function is demonstrated through simulations on the CEDAR handwritten digit recognition 

task, showing that classification performance can be adjusted according to the order of the modified loss 

function. This approach will serve as the basis for designing a novel cost-sensitive learning method tailored 

to neural networks with softmax outputs. 

Keywords: Error Back-propagation; Cross-entropy Loss Function; Cost-sensitive Learning; Neural Networks; 

Softmax Activation 

 

1. Introduction 

It is well known that feed-forward neural networks with multiple hidden layers are fundamental models 

of machine learning, and they are typically trained by the EBP (Error Back-Propagation) algorithm [1, 2]. 

Moreover, based on the theoretical proof that feed-forward neural networks with sufficient hidden nodes are 

universal approximators of arbitrary functions [3], numerous efforts have been made to achieve satisfactory 

performance on real-world tasks. To train neural networks with sigmoidal activation outputs, the EBP algorithm 

minimizes the MSE (mean-squared error) function between the actual and desired outputs [1]. However, there 

were many reports that the EBP algorithm often exhibits slow convergence and poor generalization to test 

samples [4-7]. 

To address these issues, various approaches have been proposed to modify or replace the objective 

function, aiming to improve the performance of the EBP algorithm by employing alternative loss functions 

beyond MSE [8-15]. For example, additive noise was introduced into the target signals to enhance MSE-based 

learning [11]. The MLS (mean-log square) loss function was proposed to suppress the excessive weight updates 

caused by outliers of training data [12]. Ooyen and Nienhuis introduced the binary cross-entropy loss function 

to accelerate the learning convergence by alleviating incorrect saturation of output nodes [13]. However, the 

binary cross-entropy loss function method is prone to overspecialization to training data [14]. To address this 

limitation, the n-th order extension of the binary cross-entropy error has been shown to yield improved 

performance by mitigating overspecialization [14]. Another notable approach is the classification figure of merit 

(CFM) objective function, proposed by Hampshire and Waibel, which also aims to reduce overspecialization 

to training data [15]. 

In contrast, for multi-class classification problems-where only one class is correct-the softmax function is 

commonly used as the output activation in neural networks, as it produces a well-defined probability distribution 
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over all classes and facilitates direct comparison of class probabilities [2], [16]. Neural networks with softmax-

activated output nodes are typically trained by minimizing the cross-entropy loss function [16-18]. To further 

improve classification performance, several approaches have been proposed that modify the standard cross-

entropy loss function [19-22]. For example, to enhance classification tasks involving one-hot encoded class 

labels, Shim proposed incorporating an additional term that depends on the predicted probability of the ground-

truth class [19]. The MPCE (Maximum Probability-based Cross Entropy) loss function was introduced to 

exploit the maximum predicted probability across all classes in the output distribution [20]. To mitigate the 

vanishing gradient issue that arises when the cross-entropy loss becomes nearly zero, Li et al. introduced a 

regularization term into the standard cross-entropy formulation. This term penalizes the probability assigned to 

incorrect classes relative to the ground-truth class [21]. Additionally, Ho and Wookey proposed the real-world-

weight cross-entropy loss function in both binary and single-label multi-class classification variants [22].   

However, in practice, misclassification can incur vastly different consequences depending on the domain, 

particularly in areas like finance, security, insurance, and healthcare. For example, in medical diagnosis, the 

consequence of misclassifying a brain tumor as a normal cell can be far more severe and potentially fatal than 

erroneously diagnosing a normal cell as a brain tumor. In the context of financial fraud detection, the cost of 

failing to identify a fraudulent transaction-by classifying it as legitimate-is significantly higher than the cost of 

mistakenly classifying a legitimate transaction as fraudulent. In the domain of security, misclassifying a 

cyberattack as benign traffic can lead to serious breaches, data loss, or system compromise, whereas a false 

alarm may only cause temporary inconvenience or additional verification effort. Therefore, it is often necessary 

to address misclassification costs differently depending on their real-world importance rather than simply 

aiming to improve overall classification accuracy. To achieve this goal, the learning performance of the neural 

network should be controlled through various means, such as modifying the loss function. 

A modified version of the binary cross-entropy loss function has been proposed to regulate the learning 

behavior of neural networks with sigmoid outputs, based on the relative importance of the class to which the 

input data belongs [23-25]. In this approach, the order parameter of the loss function controls the error signal 

of the output nodes, following an n-th order relationship between the desired and actual output values [23-26]. 

Specifically, when data from a more important class is presented, the network undergoes more intensive training 

with larger weight updates; conversely, data from less important classes leads to more conservative training 

with smaller weight updates. These approaches represent a form of cost-sensitive learning designed to address 

class imbalance problems. 

Building on this perspective, this paper proposes a modified cross-entropy loss function for neural 

networks with softmax output nodes, which incorporates an order parameter to adjust the magnitude of weight 

updates. Specifically, by tuning the order of the proposed loss function, the training dynamics of softmax-based 

neural networks can be effectively controlled. This approach offers a foundation for developing a new cost-

sensitive learning algorithm for neural networks with softmax output nodes. 

In section 2, we provide a brief overview of neural networks with softmax output nodes and the use of the cross-

entropy loss function for training. We then introduce a modified version of the loss function designed to control the 

training process. In section 3, the effectiveness of the proposed method is demonstrated through simulations on the 

CEDAR handwritten digit recognition dataset. Finally, section 4 presents the conclusions of the paper. 

2. Modified Cross-Entropy Loss Function  

 

Figure 1. The architecture of a feed-forward neural network. 
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Let us consider a feed-forward neural network has N inputs, H hidden nodes, and M output nodes. Figure 

1 illustrates the architecture of the network. When an input data 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑁]𝑇 is fed into the neural 

network, the activation of the j-th hidden node is given by 

ℎ𝑗 = 𝑓(ℎ̂𝑗) = 𝑓 (𝑤𝑗0 + ∑ 𝑤𝑗𝑖𝑥𝑖
𝑁

𝑖=1
) , 𝑗 = 1,2, … , 𝐻,                 (1) 

where 𝑓(⋅) denotes the activation function of the hidden nodes, 𝑤𝑗𝑖  is the weight connecting input 𝑥𝑖 to 

hidden node ℎ𝑗, 𝑤𝑗0 is the bias term of ℎ𝑗, and ℎ̂𝑗 is the net input or the weighted sum to the hidden node. The 

activation of the k-th output node is computed using the softmax function: 

𝑦𝑘 =
𝑒𝑦̂𝑘

∑ 𝑒𝑦̂𝑗𝑀
𝑗=1

 (𝑘 = 1,2, … , 𝑀), (2) 

where the net input 𝑦̂𝑘 to the output node is defined as 

𝑦̂𝑘 = 𝑣𝑘0 + ∑ 𝑣𝑘𝑗ℎ𝑗
𝐻

𝑗=1
.                                (3) 

Here, 𝑣𝑘0 is the bias of output node 𝑦𝑘 , and 𝑣𝑘𝑗  denotes the weight connecting hidden node ℎ𝑗 to output node 

𝑦𝑘 . 

The desired output vector 𝒕 corresponding to a training sample 𝒙 is one-hot encoded as follows:  

𝑡𝑘 = {
1, if 𝒙 originates from class 𝑘
0, otherwise.

                           (4) 

As a distance measure between the actual and desired outputs, the cross-entropy loss function is typically used 

[16]: 

𝐸𝐶𝐸 = − ∑ 𝑡𝑘  𝑙𝑜𝑔 𝑦𝑘
𝑀
𝑘=1 .                                 (5)  

To minimize 𝐸𝐶𝐸  over the training dataset, the weights 𝑣𝑘𝑗  are iteratively updated using the gradient descent 

method: 

𝛥𝜈𝑘𝑗 = −𝜂
𝜕𝐸𝐶𝐸

𝜕𝑣𝑘𝑗
= 𝜂𝛿𝑘

(𝑜𝑢𝑡𝑝𝑢𝑡)
ℎ𝑗,                           (6) 

where the error signal for the output node is 

𝛿𝑘
(𝑜𝑢𝑡𝑝𝑢𝑡)

= −
𝜕𝐸𝐶𝐸

𝜕𝑦̂𝑘
= 𝑡𝑘 − 𝑦

𝑘
,                             (7) 

and 𝜂 is the learning rate. Similarly, the weights 𝑤𝑗𝑖  are updated as follows: 

𝛥𝑤𝑗𝑖 = −𝜂
𝜕𝐸𝐶𝐸

𝜕𝑤𝑗𝑖
= 𝜂𝛿𝑗

(ℎ𝑖𝑑𝑑𝑒𝑛)
𝑥𝑖 = 𝜂𝑥𝑖𝑓′(ℎ̂𝑗) ∑ 𝑣𝑘𝑗

𝑀
𝑘=1 𝛿𝑘

(𝑜𝑢𝑡𝑝𝑢𝑡)
.                (8) 

This weight-update procedure corresponds to the well-known error back-propagation (EBP) algorithm for 

minimizing the standard cross-entropy loss function [16-18]. As shown in Eqs. (6) and (7), the weight updates are 

proportional to the error signal of the output node, which is the difference between the desired and actual outputs. 

To provide greater flexibility in controlling the learning process, we propose a modification of the cross-

entropy loss function in which the error signal at the output node is formulated as an n-th order function of the 

difference between the desired and actual outputs. Under the assumption that the input sample belongs to class 

k, the proposed loss function is defined as: 

𝐸𝑚𝑜𝑑 = −[∑ 𝑡𝑗 𝑙𝑜𝑔 𝑦𝑗𝑗≠𝑘 + ∫
(2𝑡𝑘−1)𝑛+1(𝑡𝑘−𝑦𝑘)𝑛

𝑦𝑘(1−𝑦𝑘)
𝑑𝑦𝑘],                       (9)  

where n is the order of the modification and k is the index of the true class label for the input data. For softmax 

output nodes,  

𝜕𝑦𝑘

𝜕𝑦̂𝑗
= {

𝑦𝑘(1 − 𝑦𝑘), if 𝑗 = 𝑘

−𝑦𝑘𝑦𝑗 , otherwise.
                                   (10) 

Also,  

𝜕

𝜕𝑦̂𝑘
[∫

(2𝑡𝑘−1)𝑛+1(𝑡𝑘−𝑦𝑘)
𝑛

𝑦𝑘(1−𝑦𝑘)
𝑑𝑦

𝑘
] =

(2𝑡𝑘−1)𝑛+1(𝑡𝑘−𝑦𝑘)
𝑛

𝑦𝑘(1−𝑦𝑘)

𝜕𝑦𝑘

𝜕𝑦̂𝑘
,                       (11)  
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Therefore, the resulting error signal for the target output node 𝑦𝑘  is 

𝛿𝑘
(𝑜𝑢𝑡𝑝𝑢𝑡)

= −
𝜕𝐸𝑚𝑜𝑑

𝜕𝑦̂𝑘
= −𝑦

𝑘
∑ 𝑡𝑗𝑗≠𝑘 + (2𝑡𝑘 − 1)𝑛+1(𝑡𝑘 − 𝑦

𝑘
)

𝑛
.                (12) 

Assuming the input sample belongs to class k, we have 𝑡𝑘 = 1 and 𝑡𝑗 = 0 (𝑗 ≠ 𝑘), which simplifies Eq. (12) to 

𝛿𝑘
(𝑜𝑢𝑡𝑝𝑢𝑡)

= (1 − 𝑦
𝑘
)

𝑛
.                                (13) 

For a non-target output node 𝑦𝑖( where 𝑖 ≠ 𝑘), the error signal is: 

𝛿𝑖
(𝑜𝑢𝑡𝑝𝑢𝑡)

= −
𝜕𝐸𝑚𝑜𝑑

𝜕𝑦̂𝑖
== −𝑦

𝑖
∑ 𝑡𝑗𝑗≠𝑘 − 𝑦

𝑖

(2𝑡𝑘−1)𝑛+1(𝑡𝑘−𝑦𝑘)
𝑛

1−𝑦𝑘

= −𝑦
𝑖
(1 − 𝑦

𝑘
)

𝑛−1
.         (14) 

When the order n is equal to 1, Eqs. (13) and (14) reduce to Eq. (7), indicating that the proposed loss function 

is indeed a generalization of the standard cross-entropy loss. 

We can further analyze the characteristics of the proposed loss function by visualizing the error signals 

using two-dimensional and three-dimensional plots. As shown in Figure 2, which depicts 𝛿𝑘
(𝑜𝑢𝑡𝑝𝑢𝑡)

  for various 

values of n, the update strength can be controlled through the order n, with weight updates remaining 

proportional to the error signal magnitude. Figure 3 presents a 3D plot of 𝛿𝑖
(𝑜𝑢𝑡𝑝𝑢𝑡)

(𝑖 ≠ 𝑘) when n-th 4. When 

𝑦𝑘 = 0 , 𝛿𝑖
(𝑜𝑢𝑡𝑝𝑢𝑡)

= −𝑦𝑖 , which matches the behavior under the cross-entropy loss. And, when 𝑦𝑘 = 1 , 

𝛿𝑖
(𝑜𝑢𝑡𝑝𝑢𝑡)

= 0. For 0 < 𝑦𝑘 < 1, the error signal behaves as 𝛿𝑖
(𝑜𝑢𝑡𝑝𝑢𝑡)

= −𝑦𝑖(1 − 𝑦𝑘)𝑛−1, where the slope of 

the curve 𝛿𝑖
(𝑜𝑢𝑡𝑝𝑢𝑡)

 versus 𝑦𝑖  is governed by the term −(1 − 𝑦𝑘)𝑛−1. 

 

Figure 2. Plots of the error signal for the target node, 𝛿𝑘
(𝑜𝑢𝑡𝑝𝑢𝑡)

. Here, n is the order of the proposed loss function. 

 

Figure 3. Plots of the error signal for non-target nodes, 𝛿𝑖
(𝑜𝑢𝑡𝑝𝑢𝑡)

 when n=4.  
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3. Simulations 

To verify the effectiveness of the proposed loss function, we conduct simulations on the CEDAR 

handwritten digit recognition task [27]. Each digit image consists of 12×12 pixels, with each pixel taking integer 

values from 0 to 15. The feed-forward neural network comprises 144 input nodes, 60 hidden nodes with the 

sigmoid activation function, and 10 output nodes with the softmax activation function. A total of 18,468 

handwritten digit images are used for training, and 2,213 images are used for testing. Since a fair comparison 

cannot be ensured when using identical learning rates, we instead derive the learning rates such that the expected 

value of the product of the target node error term and the learning rate, 𝐸 {𝜂𝛿𝑘
(𝑜𝑢𝑡𝑝𝑢𝑡)

}, is the same across 

simulations, assuming that 𝑦𝑘  follows a uniform distribution over [0,1] [14]. That is, we used 𝜂𝐶𝐸 = 0.01 for 

the cross-entropy loss and 𝜂𝑚𝑜𝑑 =
𝑛+1

2
𝜂𝐶𝐸 for the modified loss. 

 
(a) 

 
(b) 

Figure 4. Simulation results for the handwritten digit recognition task. “Squared Error” refers to EBP learning 

using the mean-squared error function, while “Modified Cross-Entropy” represents the proposed learning 

algorithm with the order parameter n. “Cross-Entropy” corresponds to the modified cross-entropy with n = 1. 

(a) Misclassification ratio for the training patterns; (b) Misclassification ratio for the test patterns. 

We simulate EBP training to minimize the proposed loss function with the order parameter n ranging from 

1 to 7. For each value of n, nine simulations are conducted using different initializations of the feed-forward 

neural networks, where the initial weights are randomly drawn from a uniform distribution over 

[−1 × 10−4, 1 × 10−4] . The results are averaged to produce the figures. Figure 4(a) presents the 

misclassification ratio for the training patterns. As the order parameter n increases, the magnitude of the output 

error term 𝛿𝑘
(𝑜𝑢𝑡𝑝𝑢𝑡)

 decreases, which in turn slows down the convergence of learning. Consequently, as shown 
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in Figure 4(b), the misclassification ratio for the test patterns increases. This demonstrates that the learning 

performance can be controlled by adjusting the order parameter n. 

Additionally, we simulate a feed-forward neural network with sigmoidal output activation functions 

trained to minimize the MSE function. Here, we used 𝜂𝑀𝑆𝐸 = 0.06. As expected, the performance of the MSE-

based model is inferior to those trained using the cross-entropy and the proposed modified cross-entropy loss 

functions [17]. This is because neural networks with softmax output nodes are generally more suitable for 

classification tasks than those with sigmoid outputs, and the cross-entropy loss is more effective than MSE in 

such scenarios. For clarity, we summarize training parameters in Table 1. 

Although the effectiveness of the proposed loss function has been verified through simulations on the 

CEDAR handwritten digit dataset, further experiments on additional datasets are necessary to provide stronger 

empirical support for the claim. Therefore, we plan to conduct experiments on healthcare datasets, such as 

thyroid and mammography disease classification tasks, to verify whether the proposed loss function can 

enhance classification performance in real-world disease prediction scenarios. 

Table 1. Summary of simulation parameters. 

Architecture Weight Initialization Learning Rate 
Training 

Epoch 

144 inputs, 

60 sigmoidal hidden nodes, 

10 softmax output nodes 

Uniform distribution over 

[−1 × 10−4, 1 × 10−4] 
MSE(sigmoid output): 𝜂𝑀𝑆𝐸 = 0.06 

CE: 𝜂𝐶𝐸 = 0.01 

Modified Method: 𝜂𝑚𝑜𝑑 =
𝑛+1

2
𝜂𝐶𝐸  

500 

epochs 

4. Conclusions 

Various loss or objective functions have been proposed to improve the performance of neural networks with 

sigmoid activation output nodes, beyond the commonly used MSE function. Additionally, numerous modifications 

of the cross-entropy loss function have been introduced to enhance the performance of neural networks with 

softmax output nodes. However, improving overall classification accuracy alone is often insufficient. 

Misclassification costs must be addressed differently depending on their importance in specific real-world 

applications. These costs can vary significantly across domains such as finance, security, insurance, and healthcare. 

To this end, we proposed a modification of the standard cross-entropy loss function to control neural network 

learning behavior using an order parameter embedded in the loss function. Two-dimensional and three-

dimensional plots of the error signal demonstrate that the proposed loss function generates an error signal of the 

target output node, which follows an n-th order function of the difference between the actual and desired outputs. 

 We validated the effectiveness of the proposed loss function through simulations on the CEDAR 

handwritten digit recognition task. As expected, the order parameter controlled the network’s training 

dynamics—higher values of the order parameter led to slower convergence during learning and, consequently, 

an increase in the misclassification ratio for the test patterns. Based on this approach, a novel cost-sensitive 

learning algorithm can be devised for neural networks with softmax outputs. 

Conflicts of Interest: The author declares no conflict of interest. 
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