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Abstract: Training neural networks with softmax outputs requires assigning target values to output nodes. 
Due to its simplicity, we often use one-hot encoding, which adopts “one” or “zero” as the desired output 
values. However, when training neural networks to minimize the cross-entropy error function between the 
desired and actual output node values, overfitting of neural networks to training samples becomes a significant 
issue. A probabilistic target encoding has been proposed to mitigate the overfitting. In this paper, we derive 
the optimal solutions for output nodes that minimize the cross-entropy error function using the probabilistic 
target encoding. In the extreme case of the probabilistic target encoding, the analysis corresponds to the 
cross-entropy error function with one-hot encoding. The statistical analyses conducted to derive the optimal 
solutions provide considerable insights, including the interval of target values for the Bayes classifier. 
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1. Introduction

Pattern classifiers can be implemented based on the posteriori probabilities that an input sample belongs 
to a certain class, which provides the Bayes classifier [1]. The Bayes classifier essentially requires estimating 
the probability distribution or the p.d.f.(probability density function) of samples, which is a very difficult task. 
Parzen’s window provides a method to estimate the p.d.f. of samples by locating the window function at each 
sample. However, the Parzen’s window method requires a sufficient number of samples for accurate estimation 
of the p.d.f. [2]. 

Alternatively, we can implement pattern classifiers with a discriminant function, which provides the class 
boundary of patterns without estimating the p.d.f. or probability distribution of pattern samples. The decision 
rule of classification is to select the class with the maximal discriminant value, which corresponds to the 
confidence degree that an input sample belongs to a certain class [3]. In real environments with finite training 
samples, the discriminant function approach attains better performance than the posteriori probability approach. 
From this point of view, NNs (neural networks) are trained based on discriminant functions [4]. 

Conventionally, NNs are trained to minimize MSE (mean-squared error) function between desired and 
actual output node values, which correspond to the discriminant values [5]. Additionally, there is a variant of 
MSE that add noise to the desired values of output nodes to anticipate performance improvement [6]. To 
suppress the large amount of weight updating caused by outliers of training data, MLS (mean-log square) error 
function was proposed by Liano [7]. The binary CE (cross-entropy) error function [8] can accelerate the learning 
convergence of neural network classifiers, and the n-th order extension of binary CE [9, 10] attains better 
classification performance than MSE and binary CE error functions. Contrary to the above error functions, 
which are minimized during training, Hampshire and Waibel proposed CFM (classification figure of merit) 
function to be maximized for training NNs [11].  



International Journal of Contents Vol.21, No.1, Mar. 2025 89  

When training neural network classifiers with the above discriminant functions, we need to assign desired 
values of neural network outputs. The most popular method is one-hot encoding of the desired output vector, 
which contains all zeros except for a single 1 at the index corresponding to a class. Assuming that desired values 
of NNs are encoded with the one-hot vector, learning of NNs based on the above various functions had been 
analyzed from a statistical perspective under certain regularity conditions [12-15].  

DNNs (deep neural networks) is a breakthrough of NNs for real world applications. In classification 
applications, there are three key substitutions between two-layer NNs and DNNs. The sigmoid activation 
function of neural network output is replaced with the softmax function in DNNs [16]. The second is the use of 
ReLU(Rectified Linear Unit) activation function for hidden layer of DNNs [17]. The third is the use of CE error 
function as a training criterion of DNNs [16]. Additionally, probabilistic target encoding has been proposed to 
alleviate the overfitting of DNNs to training samples [18].  

In this paper, we analyze DNNs from a statistical perspective to provide considerable insights into the 
properties and advantages of the learning method based on the cross-entropy error function with the 
probabilistic target encoding. In section 2, we briefly review the one-hot encoding and the probabilistic target 
encoding. In section 3, we derive the optimal solution of output nodes to minimize the CE error function with 
the probabilistic target encoding. Additionally, we discuss considerable insights including the interval of target 
values with the probabilistic target encoding. Finally, section 4 concludes this paper. 

2. One-Hot Encoding vs. Probabilistic Target Encoding  

In classifications, we usually train DNNs to minimize the CE error function defined by  = − ∑      , (1)

where M is the number of output nodes,  denotes the k-th output node’s value, and  is its desired value 
[16]. We adopt the softmax activation function for output nodes of DNNs, given by  = ∑   ( = 1,2, … , )    (2)

where   is the weighted sum or net input to  [16]. 
Let  be an input vector and  =  [ , , . . . , ]  be the target vector of output values corresponding 

to an input . In the scheme of one-hot encoding for classification applications of DNNs, the target vector is 
coded as follows:  = 1, if  originates from class 0, otherwise.  (3)

The desired values 1 or 0 in (3) are the extreme values of the softmax function. Thus, continuous updating 
of neural networks parameters to decrease the CE error function can cause neural networks to overfit to training 
samples, consequently degrading the classification performance to test samples [9]. 

After successful training of neural networks in the limit that the number of training samples goes to infinity, 
the neural network output   can be interpreted as a posterior probability that an input vector belongs to class  [12-15]. Therefore, it is better to use a posterior probabilistic value instead of the one-hot encoding. In this 
sense, a probabilistic encoding of the target vector was proposed as follows [18]: 

 =  (), if  originates from class 1 − () − 1 , otherwise.  (4)

Here, () is a real value between 0 and 1. Since it is very difficult to estimate the posterior probability 
that an input vector belongs to class , we use a real value between 0 and 1 as a substitution of the posterior 
probability. Also, () = 1 corresponds to the one-hot encoding. That is, the one-hot encoding is the extreme 
case of the probabilistic target encoding. Unlike other regularization methods such as drop-out [19, 20], weight 
decay [21], and penalizing confident output distributions [22], the probabilistic target encoding method achieves 
the effect of preventing overfitting with a simple target encoding scheme, without any additional burden on the 
training algorithm of neural networks [18]. The effectiveness of the probabilistic target encoding was 
demonstrated in [18] through simulations of multi-layer perceptrons and convolutional neural networks for 
various classification problems such as handwritten-digit recognition, isolated-word recognition, image 
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classification, and object recognition tasks. The simulation results showed that the probabilistic target encoding 
is superior to one-hot encoding as it prevents the overfitting of neural networks to training samples. 

3. Statistical Analyses of Cross-Entropy Error Function  

Let () denote the posterior probability that  originates from class . In the limit that the number of 
samples goes infinity, the minimizer of CE (1) with the probabilistic target encoding converges towards the 
minimizer of the function { } = −∫ ∑ [()() + 1 − () () ]  ()() ,                (5) 
where { } is the expectation operator and () is the p.d.f. of input samples. Let us seek the function  =  [ , , . . . , ] minimizing the criterion (5) in the space of all functions taking values in (-1, +1). 
For fixed (), the optimal solution () ( = 1,2, … , ) can be derived by  ∑ [()()+1−()1−()−1 ]  =1  = 0.                            (6) 

By substituting  = ( − ), ∑ [()() + 1 − () () ]    −  = 0                     (7) 
Above equation can be reorganized as follows: ()() + 1 − () ()  1 −  + ∑ ()() + 1 − () ()  (−) = 0   (8) 

Thus, we can get the optimal solution () which corresponds to   in {} = 0 () = ()()1−()1−()−1()()1−()1−()−1 +∑ ()()+1−()1−()−1 ≠ .               (9) 

Let’s consider the two-class classification case, where =2 and 1 − () = (). Simplifying (9) gives () = ()()1−()(1−())()[()()]+1−()(1−()+()) .                   (10) 

If () = 1 and () = 1, which corresponds to the one-hot encoding, simplifying (10) results in () = ()()+1−() = ().                           (11) 

Hence, the optimal solution of output nodes trained with the CE error function under the one-hot encoding 
scheme gives the Bayes classifier by the decision of maximum output value. Considering the case of () =(), (10) is simplified to 

    () = ()2() − 1 + 1 − ().                        (12) 
From Figure 1 which is the plot of () vs. (), the target value should be 0.5 < () ≤ 1 so that () is the strictly increasing function of (). If 0 < () ≤ 0.5, () is not strictly increasing and NNs 

cannot be the Bayes classifier. 

Figure 1. The optimal solution of output node for minimizing the expectation of CE error function using the 
probabilistic target encoding in the two-class classification case ( = 2). () denotes the optimal solution 
of the th output node and () denotes the posterior probability that  originates from class  
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Next, let’s consider the case of >2. If () = () =  in (9), we can get () = ()1−()1−−1()1−()1−−1++1−−1 ∑ 1−()≠ .                     (13) 

By substituting ∑ 1 − () =  − 1, (13) is rearranged into  () =  − 1−−1 () + 1−−1.                            (14) 
Here,  = 1 corresponds to the one-hot encoding and (13) is simplified to () = (), which is the 

same with the two-class classification case. Additionally, we can consider special cases of  =  and  = 0 
which are summarized as follows: 

() =  (), if  = 1 1 , if  = 1− 1−1 () + 1−1 , if  = 0.                                (15) 

If  = , () has a constant value of , which cannot be a Bayes classifier. When  = 0, () is a 
decreasing function of (), and this is also not a Bayse classifier. Thus, the condition of Bayes classifier is  <  ≤ 1, which guarantees that () is a strictly increasing function of (). Figure 2 clarifies these 
arguments. Additionally, the probabilistic target encoding can be interpreted as a weighted mixture of the one-
hot encoding targets and a uniform distribution [23]. There is a possibility that () ≠ () for performance 
improvement. However, analyzing the case of () ≠ ()  is another challenging subject because of 
complexity. 

Figure 2. The optimal solution of output node for minimizing the expectation of CE error function using the 
probabilistic target encoding in the multi-class classification case. Here, () denotes the optimal solution of 
the th output node, () denotes the posterior probability that  originates from class , and the num of class  = 5 

4. Conclusions 

In classification applications, we usually train deep neural networks using the cross-entropy error function. 
Conducting statistical analyses of learning procedure is strongly recommended to determine what neural 
networks eventually learn. From this point of view, this paper analyzed the cross-entropy error function with 
statistical perspective within the scheme of the probabilistic target encoding. Firstly, this paper has 
demonstrated a strong relationship between the optimal solution and Bayes probability. Specifically, Bayes 
probabilities are estimated by minimizing the cross-entropy error function with the probabilistic target encoding. 
Secondly, the analysis results indicate that the target values should lie between 1 and the reciprocal of the 
number of classes, ensuring that the classifier must be a Bayes classifier. Additionally, in extreme cases, the 
analysis corresponds to the cross-entropy error function under the one-hot encoding. 
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