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ABSTRACT 
 

Among many UNESCO world heritage sites in Korea, “Historic Village: Hahoe” is adjacent to Nakdong River and it is imperative 
to monitor the water level near the village in a bid to forecast floods and prevent disasters resulting from floods.. In this paper, we 
propose a recurrent neural network with multiple hidden layers to predict the water level near the village. For training purposes on 
the proposed model, we adopt the sixth-order error function to improve learning for rare events as well as to prevent 
overspecialization to abundant events. Multiple hidden layers with recurrent and crosstalk links are helpful in acquiring the time 
dynamics of the relationship between rainfalls and water levels. In addition, we chose hidden nodes with linear rectifier activation 
functions for training on multiple hidden layers. Through simulations, we verified that the proposed model precisely predicts the 
water level with high peaks during the rainy season and attains better performance than the conventional multi-layer perceptron. 
 
Key words: Flooding, Water Level Prediction, Hahoe Village, Recurrent Neural Networks, Error-Back Propagation. 
 
 

1. INTRODUCTION 

 
Hornik et al. proved that multilayer feed-forward neural 

networks are universal approximators of any functions [1]-[3]. 
Based on the results, there have been many applications of 
feed-forward neural networks in various fields such as pattern 
recognition, speech recognition, time series prediction, fraud 
detection, telecommunications, and so forth [4]-[7]. 
Furthermore, deep learning enlarges the application area to 
image understanding and language processing [8]. Also, there 
have been reports to forecast disasters such as tide, storm surge, 
and landslide using feed-forward neural networks [9]-[13]. 
Furthermore, it is estimated that 40% of the total economic loss 
caused by all kinds of disasters are due to flooding [14]. 
Because of the drastic impact of flooding on lives and 
properties, many researchers have focused on the relationships 
between rainfalls and flood discharges or water levels of rivers 
[14]-[17]. We can categorize the research into deterministic, 
conceptual, and parametric models [18]. Among the models, 
the parametric model tries to find mathematical transfer 
functions to relate several variables to runoff. In this point of 
view, neural network models belong to the parametric model 
[18]. Since it is not necessary to elucidate the complex 
mechanism of phenomena to be modeled by neural networks, 
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hydrologists attempted to forecast floods or to predict water 
levels using feed-forward neural networks [19]-[26].  

Feed-forward neural networks are applied to forecast the 
peak stages of lower reaches stations at rivers [15], the flood 
disaster area [21] in Chian, and the flow of the River Nile in 
Egypt with multi-step ahead predictions [19]. There was a 
report to predict T-year flood events for 850 catchments across 
the UK [20]. Also, daily flows during flood events in India 
were modeled using neural networks [22]. It was shown that 
neural networks could model the rainfall-runoff relationship in 
a semiarid region in Morocco although there were extreme 
events such as floods and droughts with irregularity [23], [24]. 
Furthermore, neural networks were combined with a kinematic 
wave approach for improving event-based rainfall-runoff 
modeling [25]. 

In 1972, UNESCO concluded the “Convention 
Concerning the Protection of the World Cultural and Natural 
Heritage” for national and international protection activities of 
world heritage. Korea National Commission for UNESCO has 
taken a great role to register and to protect world heritage in 
Korea and, as a result, there are twelve UNESCO world 
heritage sites in Korea. Among them, “Historic Village: Hahoe” 
in Andong region is adjacent to Nakdong River and, therefore, 
the water level near the village should be carefully monitored 
for forecasting floods or preventing disasters from floods. 
Accordingly, there was the hydrological modeling of water 
level near “Hahoe Village” with feed-forward neural networks 
[26].  

However, all these feed-forward neural networks used in 
[15] and [19]-[26] were trained to minimize mean-squared 
error (MSE) function for training data based on the error back-
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propagation (EBP) algorithm [27]. To improve the performance 
of flood forecasting or water level prediction, we should deal 
with time dynamics of the relationship between rainfalls and 
floods which are too complicated to be modeled in the static 
feed-forward neural network models [28]. Also, it is necessary 
to increase the number of hidden layers to resolve complex 
problems [8]. Besides the architecture of neural network model, 
we should handle the imbalance of hydrological data since low 
or medium level data are very much dominant over high-level 
data [14], [20]. During training to minimize MSE, neural 
networks show poor prediction performance for rare events 
such as high-level data or floods because of the 
overspecialization to low or medium level data. In this point of 
view, this paper proposes a recurrent neural network with 
multiple hidden layers for improved water level prediction near 
“Hahoe Village.” Also, we adopt the six-order error function 
between desired and real output values of the neural network to 
suppress the learning for abundant events and to improve the 
learning for rare events. 

In section 2, we briefly introduce a feed-forward neural 
network and its EBP training algorithm. Then, we propose a 
recurrent neural network which has recurrent and cross-talk 
connections among hidden nodes. In section 3, we simulate the 
water level prediction near “Hahoe Village” with real data. 
Finally, section 4 concludes this paper. 
 
 

2. A RECURRENT NEURAL NETWORK WITH 
MULTIPLE HIDDEN LAYERS 

 
2.1 Error Back-Propagation Algorithm 
 

 
Fig. 1. The architecture of a multilayer perceptron 

 
Consider a feed-forward neural network, so-called 

“MLP(multi-layer perceptron),” consisting of N inputs, H 
hidden nodes, and M output nodes, as shown in Fig. 1. When 
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Here, jiw denotes the weight connecting ix  to jh , 0jw is 

a bias, and tanh(.) is the sigmoidal activation function of hidden 
node. If we want to generate “warning-no warning signal” for 
flood forecasting[14], it belongs to classification problems in 
which we use the sigmoidal activation function for output 
nodes [27]. However, our goal is to predict water levels which 
are real numbers above zero, and we adopt a linear function as 
an activation function of output nodes. Consequently, the k-th 
output node with a linear activation function is given by 
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Also, 0kv  is a bias and kjv  denotes the weight connecting 

jh  to ky . 
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To minimize E, according to the negative gradient of MSE, 

output weights kjv ’s are iteratively updated by 
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is the error signal of output node and   is the learning rate. 

Also, by the backward propagation of the error signal, hidden 

weights jiw ’s are updated by 
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In Eq. (6), the error signal of output node is back-

propagated through output weight kjv . The above weight-

updating procedure for the training of MLP is the EBP 
algorithm [27]. 
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2.2 n-th Order Error Function 
Given the nature of hydrological data, there is an 

imbalance of data in which low or medium level data are very 
much dominant over high-level or peak data [14], [20]. When 
training neural networks to minimize MSE, neural networks are 
highly tuned to the abundant events with low or medium level 
data [29]. Consequently, we attain poor prediction performance 
for the high-level or peak data although it is essential to predict 
peaks in hydrological modeling [14]. To resolve the imbalanced 
data problem, we need to generate a strong error signal for 
output nodes far from desired values and a weak error signal 
for output nodes near desired values [29], [30]. This strategy 
has the effects that weak updating of weights for abundant 
events and robust updating of weights for rare events.  

In this sense, the error function 
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was proposed, where n is an even number [31]. If n=2, Eq. (7) 
is the same with MSE. Using the above error function, the error 
signal of output node is 
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The other equations in the EBP algorithm are the same. 

 
2.3 A Recurrent Neural Network with Multiple Hidden 
Layers 

Since there are complex time dynamics in the relationships 
between rainfalls and runoffs or water levels, the static feed-
forward neural network models have some limitations to 
predict the water level or to forecast floods [28]. Also, neural 
networks with multiple hidden layers have better capability to 
learn a complicated system than those with a single hidden 
layer [8]. As shown in Figure 2, we propose a recurrent neural 
network with L hidden layers to predict the water level of 
Nakdong River near “Historic Village: Hahoe.”  Since hidden 
nodes have recurrent and cross-talk connections with time 
delays, the weighted sum to the j-th hidden node in the l-th 
layer is given by 
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where t is the time index, 
( )lH  is the number of hidden nodes 

in the l-th hidden layer, ݓ௝௜(௟) is the weight connecting ℎ௜(௟ିଵ) to ℎ௝(௟) , 
( )l
jkr  is the recurrent or cross-talk connection between 

( )l
jh  and 

( )l
kh  with   delays, and T is the maximum value of 

 . Also, we adopt the linear rectifier unit (ReLU) as an 

activation function of hidden nodes for learning of deep 
architecture [32]. Then, the the j-th hidden node in the l-th layer 
is given by 
 ℎ௝(௟) = ൝ℎ෠௝(௟), ℎ෠௝(௟) > 00, 	 ℎ෠௝(௟) ≤ 0.                                 (10) 

 
In the EBP training of the proposed recurrent network to 

predict the water level near “Hahoe Village,” we use the error 
function given by Eq. (7) with n=6 ” for better prediction of 
peaks as well as preventing overspecialization to low or 
medium level data. 
 

 
Fig. 2. The architecture of the proposed recurrent neural 

network with L hidden layers 
 
 

3. SIMULATIONS 
 

3.1 Hahoe Village 
“Historic Village:Hahoe” located in Andong-city, Korea, 

is home to descendants of the Ryu clan and is well known for 
its traditional houses with history. Fig. 3 is a map of Andong 
region, in which Nakdong River flows around the perimeter of 
“Hahoe Village.” If there are floods during rainy season, the 
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historic village must be destroyed. So, we should carefully 
monitor the water level of Nakdong River near the village for 
forecasting or preventing floods. After careful investigation of 
water level and rainfall data provided by “Nakdong River 
Flood Control Office” and “Korea Water Resource 
Corporation,” we selected the three monitoring locations of 
rainfalls, “Pungsan,” “Iljik,” and “Andong,” which are denoted 
as red circles in Fig. 3. The rainfall gauge at “Andong” is the 
upper reaches of “Hahoe Village.” The rainfalls at “Pungsan” 
and “Iljik” should be considered for the prediction since there 
are tributary rivers from the two locations to Nakdong River. 
We select the gauge at “Gudam” to monitor the water level near 
“Hahoe Village,” since there is not a water level gauge at 
“Hahoe Village” and the nearest one is the gauge at “Gudam” 
[26]. 

 

 
Fig. 3. The map of Andong region, in which red circles are the 
locations of water level gauge at “Gudam” and rainfall gauges 

at “Pungsan,” “Iljik,” and “Andong.” 
 

Because of icing and snowing in the winter season, we 
collect the data at each gauge from March 1st to November 30th 
in the year of 2012, 2013, and 2014 with the interval of one 
hour. So, there are 6,600 data records in each year, provided by 
“Nakdong River Flood Control Office” and “Korea Water 
Resource Corp.” We use the data in 2012 and 2013 to train 
neural networks and the other to test the performance of water 
level prediction. Fig. 4 shows the water level and rainfalls in 
the year of 2014, in which we can find many irregularities 
between the water level and the rainfalls. For easy readability 
of the horizontal axis, we include the index “month/day” just 
above the data index on the horizontal axis in Fig. 4(a). We can 
find that there are very high peaks of the water level during the 
rainy season and a long period of low or medium water levels. 

 
3.2 Predicting the Water Level with the Proposed 
Recurrent Neural Network with Multiple Hidden Layers 

We construct a recurrent neural network to predict the 
water level at “Gudam” after D hours. The input layer consists 
of the rainfalls at “Pungsan”, “Iljik”, and “Andong” as well as 
the water level at “Gudam” from the current (denoted by “c”) 
to the previous c-I hours [22], [26]. Since there is not a detailed 
theoretical guide to determine parameter values of neural 
networks, we usually use the method of trial and error. 
Accordingly, through many trials and errors, we determine that 
I is eleven, the number of hidden layers L is two, the number of  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Collected data in 2014. (a) Water level at “Gudam,” (b) 
Rainfalls at “Andong,” (c) Rainfalls at “Pungsan,” and (d) 

Rainfalls at “Iljik.” 
 

hidden nodes in each hidden layer 
( )lH  is forty, and the 

maximum delay for recurrent and cross-talk connections T is 
two. Therefore, we have forty-eight inputs and one linear 
output node. After initializing the recurrent neural network with 

random weights uniformly distributed on 3 31 10 ,  1 10      , 

the EBP algorithm updates the weights to minimize the error 
function given by Eq. (7) with n=6. Here, we derive the 

learning rate so that 
1 ( )

0
0.0025p

k dy ∫  under the 

assumption that output node y is uniform on [0,1]. That is, 

0.015  . 

Firstly, we train the proposed recurrent neural network 
with D=1 for 50,000 iterations. For verifying the prediction 
performance for the test data, we plot the real and predicted 
values of the water level at “Gudam” in 2014. Fig. 5(a) shows 
the detail curves from August 16th to 20th – the period with the 



 
Sang-Hoon Oh : Recurrent Neural Network with Multiple Hidden Layers for Water Level Forecasting near UNESCO 

World Heritage Site “Hahoe Village” 

61

 

International Journal of Contents, Vol.14, No.4, Dec. 2018 

highest peak in 2014. We can find that the prediction for the 
high-level values is very close to the real values. We also 
investigate the maximum distance between the real and 
predicted values in 2014, which is 36.23cm as shown in Fig. 
5(b). However the gap of 36.23cm is at a specific time of test 
period belongs to medium-level data, and we successfully 
predict the water level with high peaks, as shown in Fig. 5 (a). 
 

 
(a) 

 
(b) 

Fig. 5. The water level at “Gudam” and its predicted value by 
the proposed recurrent neural network with D=1 after 50,000 

iterations of learning. (a) Period with the highest peak: August 
16th 18:00 ~ 20th 22:00, 2014, (b) Period with maximum 
prediction distance: March 21st 20:00~25th 24:00, 2014 

 
For comparison, we simulate the MLP with I=2, forty 

hidden nodes, and one linear output node [26]. After initializing 
the MLP with uniform random weights on 

4 41 10 ,  1 10      , we train the MLP for 50,000 iterations 

with 0.005   which is derived from 
1 ( )

0
0.0025p

k dy ∫ . 

The test result for the highest peak is in Fig, 6(a), which is 
more coarse than the predicted water level with the proposed 
recurrent neural network. As shown in Fig. 6(b), the maximum 
prediction distance of MLP is 57.31cm which is much higher 
than the one with the proposed recurrent neural network. When 
we increase I value to eleven, which is the same condition with 

the recurrent network, the maximum distance becomes 
84.06cm. This result argues that time dynamics of the 
relationship between water levels and rainfalls are too 
complicated to be modeled by the static feed-forward neural 
networks and recurrent neural networks are better to model the 
complicated time dynamics. 

 

 
(a) 

 
(b) 

Fig. 6. Test results after training of MLP with D=1. (a) Period 
with the highest peak: August 16th 18:00 ~ 20th 22:00, 2014, (b) 

Period with maximum prediction distance: March 21st 
20:00~25th 24:00, 2014 

 
Secondly, we simulate the training of the proposed 

recurrent network and MLP with D=2. The other parameters 
are the same with the simulations of Fig. 5 and 6. Fig. 7 shows 
the test results for the period with the maximum distance 
between real and predicted values. The proposed recurrent 
network shows much better performance than the conventional 
MLP trained to minimize MSE. 

For further comparison, we train the proposed recurrent 
network and the conventional MLP nine times with different 
initializations of weights. Also, we train MLPs based on the 
error function given by Eq. (7) with n=4 [31]. After training of 
neural networks for 50,000 iterations, we investigate the 
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maximum distance between real and predicted water levels for 
the test data. We average the maximum distance of nine-time 
simulations and plot the averaged data in Fig. 8. Here, “MLP,” 
“MLP(n=4),” and “Recurrent” denotes MLP trained with MSE, 
MLP trained with the n-th order error function (n=4), and the 
proposed recurrent neural network, respectively. The proposed 
recurrent neural network attains the best performance. The 
performances of MLP and MLP(n=4) rapidly degrade when D 
increases. When D increases, the time dynamics of the 
relationship between rainfalls and water levels become more 
complicated. Since the proposed recurrent neural network has a 
better capability to learn the time dynamics, its maximum 
distance is much lower than those of MLP and MLP(n=4). 

 

 
(a) 

 
(b) 

Fig. 7. Test results for the period with maximum distance 
between real and predicted water levels. (a) The proposed 

recurrent neural network with D=2. (b) MLP with D=2 
 

Since the error functions for training of the three methods 
are different, we investigate MSE of each method for 
comparison. Fig. 9 shows MSE of each method for the test data 
after the finish of training. Because of the overspecialization to 
the training data, “MLP” shows the worst MSE for the test data. 
On the contrary, MSE for the test data in the proposed method 
is better than MLP, since we adopt the sixth order error 
function to prevent the overspecialization. MLP(n=4) is slightly 

better than the proposed recurrent network in a viewpoint of 
MSE for the test data. However, in the prediction of water level 
to forecast floods, it is crucial to predict water levels with high 
peaks and to decrease the maximum distance between real and 
predicted water levels. In this sense, the proposed method is 
better than MLP(n=4).  
 

 
Fig. 8. The maximum distance between real and predicted 

water level at “Gudam” in 2014. The horizontal axis is the time 
steps D of predictions. “MLP”, “MLP(n=4)”, and “Recurrent” 

denotes MLP trained with MSE, MLP trained with the n-th 
order error function (n=4), and the proposed recurrent neural 

network, respectively 
 

 
Fig. 9. Mean-Squared Error for the test data 

 
 

4. CONCLUSIONS 
 

In this paper, we proposed a recurrent neural network with 
multiple hidden layers to improve the prediction of water level 
near “Historic Village: Hahoe.” The recurrent and cross-talk 
connections among hidden nodes are helpful to learn 
complicated time dynamics between rainfalls and water levels, 
which are difficult to be learned by static neural networks. 
Multiple hidden layers will supply neural networks with the 
better learning capability. In hydrology, it is essential to predict 
the peak of hydrograph or water level, although low or medium 
level data are very much dominant to high-level data. When we 
train neural networks to minimize MSE, neural networks are 
highly tuned to the abundant events with low or medium level 
data and, consequently, we attain poor performance for rare 
events with high peaks. To resolve the imbalanced data 
problem in hydrology, we adopted the sixth order error function 
between real and desired output values. 

Through simulations, we verified that the proposed 
recurrent neural network with multiple hidden layers precisely 
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predict the water level with high peaks during the rainy season. 
In the same period with high peaks, MLP showed a coarse 
prediction. By investing the maximum distance between real 
and predicted values with various time steps for prediction, the 
proposed recurrent network attained lower distance than MLP 
trained with MSE and MLP trained with the fourth order error 
function. This result argues that the proposed recurrent network 
have the better capability to learn the complicated time 
dynamics of the relations between rainfalls and water levels. 
From the plot of MSE of test data, we found that MLP trained 
with the fourth order error function and the proposed recurrent 
network showed lower MSE than the conventional MLP trained 
with MSE by preventing overspecialization to training data. 
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