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ABSTRACT

We present a new approach to perform independent component
analysis (ICA) for convolved mixtures. This approach is based
on filter banks, and a simplified network efficiently performs ICA
with decimated signals in each subband. Decimation provides
much less computational complexity and faster convergence speed
than the time domain approach. Futhermore, the approach does
not have a performance limitation of the frequency domain ap-
proach, and it is able to select the number of filters in the filter
bank regardless of reverberation. With an oversampled filter bank,
adaptive parameters can be adjusted without any information of
other subbands, and the approach is suitable for parallel process-
ing. We verify the effectiveness of the filter bank approach through
simulations on adaptive noise cancelling.

1. INTRODUCTION

Independent component analysis (ICA) is a signal processing method
to express multivariate data as linear combinations of statistically
independent random variables [1]. Especially, performing ICA for
convolved mixtures has become important because it has prospec-
tive signal processing applications such as speech enhancement,
telecommunications, and medical signal processing in real-world
situations [1]. There are several different approaches to ICA, and
a simple and biologically plausible adaptive learning algorithm
has been proposed with entropy maximization by Bell and Se-
jnowski [2]. To deal with convolved mixtures, the algorithm has
been extended to deconvolution of mixtures in the time domain [3]
and the frequency domain [4].

The time domain approach requires intensive computations
with a long reverberation, and it shows slow convergence speed
especially for colored input signals [5]. The computational load
can be reduced by the frequency domain approach, in which mul-
tiplication at each frequency bin replaces convolution operation in
the time domain. However, the performance of the frequency do-
main approach is limited because a long frame size is required to
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cover a long reverberation whereas the number of learning data in
each frequency bin decreases as the frame size increases [6]. Addi-
tionally, delay difference among mixing filters may cause a severe
error in the block processing of the frequency domain approach.

With an intention to overcome these disadvantages of the time
domain and the frequency domain approaches, we propose a filter
bank approach to ICA. In this approach, input signals are split into
a number of subbands. Then, each subband signal is decimated
and used for ICA. Since the ICA algorithm in each subband is ba-
sically same as the time domain approach, the filter bank approach
does not have any performance limitation of the frequency domain
approach. In addition, decimation of the subband signals saves
some computations and makes convergence speed faster than the
time domain approach.

Many researchers have studied adaptive filtering in subbands
mostly with the least-mean-square (LMS) type algorithm [7]. If
input signals are decomposed by critically sampled filter banks,
cross adaptive filters between adjacent bands are required to com-
pensate for the distortion caused by aliasing, or spectral gaps are
required in order not to have aliasing. However, the cross adap-
tive filters introduce additional adaptive parameters and may cause
slow convergence speed or a poor performance. On the other hand,
the spectral gaps distort reconstructed signals. These problems are
resolved by oversampled filter banks in which aliasing is negligi-
ble by using filters with high stopband attenuation [5].

For verification, we apply the filter bank approach to adaptive
noise cancelling and compare it with other approaches.

2. INDEPENDENT COMPONENT ANALYSIS

ICA is a linear transform of multivariate data to make the resulting
random vector as statistically independent as possible [1]. Let us
consider a set of unknown independent components,{si(n)}, such
that the components are zero-mean and mutually independent. If
the mixing of independent components involves convolution and
time-delays,

xi(n) =

NX
j=1

K−1X
k=0

aij(k)sj(n− k), (1)



wherexi(n) is an observation, andaij(k) denotes a mixing filter
coefficient.

To obtain independent components, a feedforward architecture
can be considered as

ui(n) =

NX
j=1

K−1X
k=0

wij(k)xj(n− k), (2)

where adaptive filterswij(k) supposedly make outputsui(n) re-
produce the original independent componentssi(n). Entropy max-
imization algorithm provides learning rules of the adaptive filter
coefficients as follows [3]:

∆W(0) ∝ [WT (0)]−1 − ϕ(u(n))xT (n),

∆wij(k) ∝ −ϕ(ui(n))xj(n− k), k 6= 0,

ϕ(ui(n)) = −
∂p(ui(n))

∂ui(n)

p(ui(n))
, (3)

whereW(0) is the matrix composed of zero-delay weights, and
u(n) andx(n) denote a set of estimated independent components
and the observation vector, respectively.ϕ(·) is called a score
function, andp(ui) denotes the probability density function ofui.

In the time domain approach, the computational load is large
with a long reverberation to compute the convolution of long fil-
ters, and the convergence is slow especially for colored input sig-
nals such as speech signals [5].

Instead of the time domain approach, one can consider the fre-
quency domain approach [4]. Here, the convolved mixtures can be
expressed as

Xf (n) = Af Sf (n), ∀f (4)

whereXf (n) andSf (n) are vectors, each of which is a frequency
component of the mixtures and the original independent compo-
nents at frequencyf , respectively, andAf denotes a matrix con-
taining the elements of the frequency transforms of the mixing fil-
ters at frequencyf , respectively. From eq. (4), the original in-
dependent components can be recovered by applying ICA to in-
stantaneous mixtures at each frequency bin. In order to deal with
complex-valued data, a score function was proposed as

ϕ(ui) = −
∂p(|ui|)

∂|ui|
p(|ui|) exp(j · 6 ui). (5)

Applying natural gradient by Amariet al. [8], the learning rule
becomes

∆W ∝ [I− ϕ(u)uH ]W. (6)

The frequency domain approach is computationally more ef-
ficient because convolution operation in the time domain can be
replaced by multiplication at each frequency bin. In addition, the
parameters of unmixing networks can be adapted in an orthogonal
domain. Since the adaptation of one parameter does not interfere
with other parameters, the frequency domain approach can im-
prove convergence. However, a long frame size is required to cover
a long reverberation. To maintain computational efficiency and
obtain data which are independent of those from adjacent frames,
the frame shift has to increase as the frame size increases. There-
fore, the number of data in each frequency bin decreases. Since
this causes insufficiency of data to learn adaptive parameters, the
performance of ICA will be poor [6]. In addition, different time
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Fig. 1. A 2×2 network for the oversampled filter bank approach
to ICA

ranges of independent components are combined to form mixtures
if the delay difference among mixing filters is large. Therefore,
when one performs ICA with blocks which contain different time
ranges of the independent components, an inferior performance is
obtained from the block processing of the frequency domain ap-
proach.

3. A FILTER BANK APPROACH TO INDEPENDENT
COMPONENT ANALYSIS

With oversampled filter banks in which the decimation factor is
smaller than the number of analysis filters, aliasing can be ne-
glected with each filter which has a high stopband attenuation. To
implement oversampled filter banks, we consider uniform complex-
valued filter banks [5]. In these filter banks, the analysis filters
hk(n) are obtained from a real-valued low-pass prototype filter
q(n) by a generalized discrete Fourier transform (GDFT),

hk(n) = ej 2π
K

(k+1/2)(n−(Lq−1)/2) · q(n),

k = 0, 1, · · · , K, n = 0, 1, · · · , Lq − 1, (7)

whereLq is the length ofq(n). Complex-conjugate and time-
reversed versions of the analysis filters are selected for the syn-
thesis filters

fk(n) = h̃k(n) = h∗k(Lq − n− 1). (8)

The prototype filter can be designed by iterative least-squares al-
gorithm with a cost function which considers reconstructiveness
and stopband attenuation. In addition, we can implement these fil-
ter banks efficiently by employing polyphase representation of the
analysis and synthesis filters, and using properties of the GDFT [5].

When we perform ICA in the oversampled filter banks, adap-
tive filter coefficients in each subband can be adjusted without any
information of other subbands because of negligible aliasing of the
filter banks [5]. Fig. 1 shows a 2×2 network for the oversampled
filter bank approach to ICA. The input signals which are mixtures
of unknown independent components are split into subband sig-
nals by analysis filters. Then, each subband signal is subsampled
by factorM . In each subband, a usual ICA algorithm for con-
volved mixtures independently processes the subsampled signals.
Each output signal from the ICA network is expanded, and inde-
pendent components can be reconstructed from the subband output
signals through synthesis filters after fixing permutation and scale.
In the frequency domain approach, several methods have been pro-
posed for fixing permutation and scale [4, 9]. Some methods can
be also used in the filter bank approach such as filter coefficient



normalization for fixing scale and envelope correlation method for
fixing permutation [9].

The ICA algorithm in each subband is basically the time do-
main approach. To perform ICA with a complex-valued filter bank,
we use the polar-coordinate based score function of eq. (5) in each
subband. The learning rules of the adaptive filter coefficients are
changed to deal with complex-valued data. Using a feedforward
network in each subband, the learning rules are

∆W(0) ∝ [WH(0)]−1 − ϕ(u(n))xH(n),

∆wij(k) ∝ −ϕ(ui(n))x∗j (n− k), k 6= 0. (9)

Since ICA in each subband is based on the time domain ap-
proach, the filter bank approach to ICA does not have problems
with the frequency domain approach such as a performance limi-
tation and a mismatch of the block processing. Since a simplified
ICA network can be used to process decimated input signals at
the subsampled rate in each subband, computational complexity
is considerably reduced for a long adaptive filter length. Let’s as-
sume that we haveLa adaptive filter coefficients for the fullband
time domain approach. Then, approximately2La multiplications
are required to compute outputs of the ICA network and update
the filter coefficients. On the other hand, approximatelyLa/M
filter coefficients in each subband for the filter bank approach are
sufficient to span corresponding time ranges of the fullband time
domain approach with decimation factorM . For a large number
of the adaptive filter coefficients, the computational load to com-
pute subband signals and reconstructed signals is negligible be-
cause the adaptive filter length is much greater than the analysis
filter lengths and the synthesis filter lengths. For real input signals,
we need to keep only lower half subbands of a uniform GDFT filter
bank since the remaining parts become complex conjugates. With
aK-channel oversampled filter bank, approximate total number of
multiplications,Nfb, is

Nfb ≈ 1

M
· 4 · K

2
· 2 · La

M
(10)

because one complex multiplication equals to four real multipli-
cations, and the filter bank approach processes signals at the sub-
sampled rate in each subband. Therefore, the number of multi-
plications for the filter bank approach is approximately2K/M2

times as large as that of the fullband time domain approach.
Each subband can independently compute subband output sig-

nals and adapt filter coefficients of the ICA network without other
subbands. So, the filter bank approach is apt to parallel process-
ing. Additionally, the approach is able to choose the number of
subbands regardless of reverberation. Because it uses input signals
more whitened by decimation than the fullband time domain ap-
proach, it improves convergence of the adaptive filter coefficients
of the ICA network.

4. ADAPTIVE NOISE CANCELLING BASED ON THE
FILTER BANK APPROACH

Adaptive noise cancelling is an approach to reduce noise based on
reference signals [10]. In conventional adaptive noise cancelling
systems, the primary input signal is a combination of signals(n)
and noiser0(n) in which the signals(n) is transmitted over a
channel from a signal source to a sensor and a noiser0(n) is added
in the sensor from a noise source. Another sensor receives a noise
signalr1(n) through another channel from the same noise source,

and this sensor acts as the reference input. The goal is to get a sys-
tem outputu(n) in which noise components are removed as much
as possible.

Although the most popular algorithm for noise cancellation is
LMS algorithm, the performance of the adaptive noise cancelling
systems can be improved by ICA which can consider higher-order
statistics [10]. By the entropy maximization, learning rules of
adaptive filter coefficientsw(k) can be derived as

∆w(k) ∝ ϕ(u(n))r1(n− k), (11)

where the outputu(n) is

u(n) = s(n) + r0(n)−
KX

k=1

w(k)r1(n− k). (12)

The filter bank approach to ICA can be applied to the adaptive
noise cancelling system. The primary and the reference input sig-
nals are split into subband signals by analysis filters, and all input
subband signals are decimated by factorM . In each subband, an
adaptive filter is independently adjusted without any information
of other subbands. Then, the system outputu(n) is reconstructed
from noise-cancelled subband output signals via synthesis filters
after expansion. The adaptation algorithm in each subband is es-
sentially same as the learning rule in eq. (11). In addition, noise
components in the primary input signal are cancelled using the
reference input signal, and the desired signal is observed in the
output without distortion. Therefore, the filter bank approach to
the adaptive noise cancelling does not have permutation and scale
indeterminacy which ICA generally has.

5. EXPERIMENTAL RESULTS

We have performed experiments on the adaptive noise cancelling
with the proposed filter bank approach. Two real-recorded speech
data were used as the signal and the noise sources. Each signal had
10 second length at 16kHz sampling rate. It is known that speech
signal approximately follows Laplacian distribution. Therefore,
sgn(·) was used as the score functionϕ(·). Experimental results
were compared in terms of signal-to-noise ratio (SNR), which we
define as the power of components caused by the signal source
versus that caused by the noise source at the outputu(n) in the
typical adaptive noise cancelling system,

SNR =
〈(s(n))2〉

〈(r0(n)−PK
k=1 w(k)r1(n− k))2〉 . (13)

The mixing filters from the signal source to the primary in-
put and from the noise source to the reference input were simple
linear scales. The scale values were chosen to obtain desired ini-
tial SNRs. For the mixing filter from the noise source to the pri-
mary input, we have used a measured filter in a normal office room
as shown in Fig. 2. Assuming that the primary and the reference
inputs receive signals with appropriate powers, we have normal-
ized mixture powers properly (generally to 1), and this prevents
severe mismatching between recovered signal levels and the non-
linear function. (We have not normalized mixture powers to match
output levels exactly with the nonlinear function.) All experiments
were conducted with several step sizes, and the best performance
is shown.

Fig. 3 shows the frequency response of analysis filters of an
eight-channel oversampled filter bank using the GDFT. The filter
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Fig. 3. Frequency response of analysis filters of a uniform eight-
channel oversampled filter bank

bank was designed for alias-free decimation by factorM = 6, and
it was constructed from a prototype filter with 192 taps.

Fig. 4 shows a learning curve of the proposed filter bank ap-
proach to adaptive noise cancelling with the oversampled filter
bank above. The number of taps of the adaptive filter coefficients
wasd 1024

M
e in each subband. For comparison, we have also ap-

plied the time domain and the frequency domain approaches to the
adaptive noise cancelling and displayed learning curves in Fig. 4.
We have used 1024 taps of the adaptive filter coefficients for the
time domain approach. In the frequency domain approach, the
frame size was 8192, and the frame shift was a half of the frame
size. SNRs of the frequency domain approach are much lower than
those of the other two approaches. This is because the frequency
domain approach has a performance limitation which comes from
the severe block processing error and the contradiction between the
long reverberation covering and the insufficient learning data. The
learning curves in Fig. 4 show that the filter bank approach has
much faster convergence speed than the time domain approach.
Experiments for a car and a music noise showed the same ten-
dency.

6. CONCLUSION

In this paper, we proposed a filter bank approach to perform ICA
for convolved mixtures. The approach provides a much better per-
formance than the frequency domain approach. Additionally, it
enables us to select the number of filters of the filter bank in-
dependent of reverberation. It also has much less computational
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Fig. 4. Learning curves of the three different approaches to adap-
tive noise cancelling

complexity and faster convergence speed than the time domain ap-
proach. Adaptive parameters can be adjusted without any infor-
mation of other subbands by performing the filter bank approach
with an oversampled filter bank. Therefore, the approach is suit-
able for parallel processing. Simulation results on adaptive noise
cancelling showed the effectiveness of the filter bank approach.
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