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ABSTRACT cover a long reverberation whereas the number of learning data in

We present a new approach to perform independent componenF_aCh frequency_bin decreases as the_frar_ne size increases [6]. Addi-
analysis (ICA) for convolved mixtures. This approach is based tionally, delay difference among mixing filters may cause a severe
on filter banks, and a simplified network efficiently performs ICA  €fTor in the block processing of the frequency domain approach.
with decimated signals in each subband. Decimation provides  With an intention to overcome these disadvantages of the time
much less computational complexity and faster convergence speedlomain and the frequency domain approaches, we propose a filter
than the time domain approach. Futhermore, the approach doe$@nk approach to ICA. In this approach, input signals are split into
not have a performance limitation of the frequency domain ap- & number of subbands. Then, each subband signal is decimated
proach, and it is able to select the number of filters in the filter @nd used for ICA. Since the ICA algorithm in each subband is ba-
bank regardless of reverberation. With an oversampled filter bank, Sically same as the time domain approach, the filter bank approach
adaptive parameters can be adjusted without any information of d0€s not have any performance limitation of the frequency domain
other subbands, and the approach is suitable for parallel process@PProach. In addition, decimation of the subband signals saves
ing. We verify the effectiveness of the filter bank approach through S0me computations and makes convergence speed faster than the

simulations on adaptive noise cancelling. time domain approach. ) S
Many researchers have studied adaptive filtering in subbands

mostly with the least-mean-square (LMS) type algorithm [7]. If
input signals are decomposed by critically sampled filter banks,
1. INTRODUCTION cross adaptive filters between adjacent bands are required to com-
pensate for the distortion caused by aliasing, or spectral gaps are
Independent component analysis (ICA) is a signal processing metheehjuired in order not to have aliasing. However, the cross adap-
to express multivariate data as linear combinations of statistically tive filters introduce additional adaptive parameters and may cause
independent random variables [1]. Especially, performing ICA for slow convergence speed or a poor performance. On the other hand,
convolved mixtures has become important because it has prospecthe spectral gaps distort reconstructed signals. These problems are
tive signal processing applications such as speech enhancementgsolved by oversampled filter banks in which aliasing is negligi-
telecommunications, and medical signal processing in real-world ble by using filters with high stopband attenuation [5].
situations [1]. There are several different approaches to ICA, and For verification, we apply the filter bank approach to adaptive
a simple and biologically plausible adaptive learning algorithm noise cancelling and compare it with other approaches.
has been proposed with entropy maximization by Bell and Se-
jnowski [2]. To deal with convolved mixtures, the algorithm has
been extended to deconvolution of mixtures in the time domain [3] 2. INDEPENDENT COMPONENT ANALYSIS
and the frequency domain [4].

The time domain approach requires intensive computations ICA is a linear transform of multivariate data to make the resulting
with a long reverberation, and it shows slow convergence speedrandom vector as statistically independent as possible [1]. Let us
especially for colored input signals [5]. The computational load consider a set of unknown independent compongai$y) }, such
can be reduced by the frequency domain approach, in which mul-that the components are zero-mean and mutually independent. If
tiplication at each frequency bin replaces convolution operation in the mixing of independent components involves convolution and
the time domain. However, the performance of the frequency do- time-delays,

main approach is limited because a long frame size is required to
N K-1
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wherez;(n) is an observation, ang;; (k) denotes a mixing filter

coefficient. Mixurel |
To obtain independent components, a feedforward architecture

can be considered as
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where adaptive filters;; (k) supposedly make outputs (n) re-
produce the original independent components). Entropy max- ) ]
imization algorithm provides learning rules of the adaptive filter Fig- 1. A 2x2 network for the oversampled filter bank approach

coefficients as follows [3]: to ICA
AW(0) o [WH(O)] "~ p(u(n)x" (n),
Awi(k) o« —pui(n)zj(n—k), k#0 ranges of independent components are combined to form mixtures

Op(us(n)) if the delay difference among mixing filters is large. Therefore,
“oui(n) when one performs ICA with blocks which contain different time
p(ui(n)) = — p(wi(n))’ ®) ranges of the independent components, an inferior performance is
obtained from the block processing of the frequency domain ap-
whereW (0) is the matrix composed of zero-delay weights, and proach.
u(n) andx(n) denote a set of estimated independent components
and the observation vector, respectively(-) is called a score
function, andp(u;) denotes the probability density functionof.

In the time domain approach, the computational load is large
with a long reverberation to compute the convolution of long fil-
ters, and the convergence is slow especially for colored input sig-
nals such as speech signals [5].

Instead of the time domain approach, one can consider the fre-
quency domain approach [4]. Here, the convolved mixtures can be
expressed as

3. AFILTER BANK APPROACH TO INDEPENDENT
COMPONENT ANALYSIS

With oversampled filter banks in which the decimation factor is
smaller than the number of analysis filters, aliasing can be ne-
glected with each filter which has a high stopband attenuation. To
implement oversampled filter banks, we consider uniform complex-
valued filter banks [5]. In these filter banks, the analysis filters
hi(n) are obtained from a real-valued low-pass prototype filter

Xys(n) = AfS¢(n), Vf 4) q(n) by a generalized discrete Fourier transform (GDFT),
whereX s (n) andS(n) are vectors, each of which is a frequency hi (n) = oI FE(et1/2)(n—(Lq—1)/2) - q(n)
component of the mixtures and the original independent compo- k=01, - K, n=0,1,  Li—1, ()

nents at frequency, respectively, and\ ; denotes a matrix con-
taining the elements of the frequency transforms of the mixing fil-
ters at frequencyf, respectively. From eq. (4), the original in-
dependent components can be recovered by applying ICA to in-
stantaneous mixtures at each frequency bin. In order to deal with

where L, is the length ofg(n). Complex-conjugate and time-
reversed versions of the analysis filters are selected for the syn-
thesis filters

complex-valued data, a score function was proposed as Fo(n) = h(n) = hi(Lg —n — 1). ®)
op(Jusil)
dlu; . i i i i - -
o(ug) = — 2 ,l exp(j - Lus). (5) The prototype filter can be designed by iterative least-squares al
p(|uil) gorithm with a cost function which considers reconstructiveness

and stopband attenuation. In addition, we can implement these fil-
ter banks efficiently by employing polyphase representation of the
analysis and synthesis filters, and using properties of the GDFT [5].
AW o [I— p(u)u|W. (6) When we perform ICA in the oversampled filter banks, adap-
tive filter coefficients in each subband can be adjusted without any
The frequency domain approach is computationally more ef- information of other subbands because of negligible aliasing of the
ficient because convolution operation in the time domain can be filter banks [5]. Fig. 1 shows a>22 network for the oversampled
replaced by multiplication at each frequency bin. In addition, the filter bank approach to ICA. The input signals which are mixtures
parameters of unmixing networks can be adapted in an orthogonalof unknown independent components are split into subband sig-
domain. Since the adaptation of one parameter does not interferenals by analysis filters. Then, each subband signal is subsampled
with other parameters, the frequency domain approach can im-by factor M. In each subband, a usual ICA algorithm for con-
prove convergence. However, a long frame size is required to covervolved mixtures independently processes the subsampled signals.
a long reverberation. To maintain computational efficiency and Each output signal from the ICA network is expanded, and inde-
obtain data which are independent of those from adjacent frames pendent components can be reconstructed from the subband output
the frame shift has to increase as the frame size increases. Theresignals through synthesis filters after fixing permutation and scale.
fore, the number of data in each frequency bin decreases. Sincdn the frequency domain approach, several methods have been pro-
this causes insufficiency of data to learn adaptive parameters, theposed for fixing permutation and scale [4, 9]. Some methods can
performance of ICA will be poor [6]. In addition, different time  be also used in the filter bank approach such as filter coefficient

Applying natural gradient by Amart al. [8], the learning rule
becomes



normalization for fixing scale and envelope correlation method for and this sensor acts as the reference input. The goal is to get a sys-
fixing permutation [9]. tem outputu(n) in which noise components are removed as much
The ICA algorithm in each subband is basically the time do- as possible.
main approach. To perform ICA with a complex-valued filter bank, Although the most popular algorithm for noise cancellation is
we use the polar-coordinate based score function of eq. (5) in eachLMS algorithm, the performance of the adaptive noise cancelling
subband. The learning rules of the adaptive filter coefficients are systems can be improved by ICA which can consider higher-order
changed to deal with complex-valued data. Using a feedforward statistics [10]. By the entropy maximization, learning rules of
network in each subband, the learning rules are adaptive filter coefficients (k) can be derived as

AW(0) o [WT(0)]7" = p(u(n)x" (n), Aw(k) o p(u(n))ri(n — k), (11)
Awij(k) o —p(ui(n))zj(n = k), k#0. © where the output(n) is

Since ICA in each subband is based on the time domain ap- K
proach, the filter bank approach to ICA does not have problems u(n) = s(n) +ro(n) — Zw(k)”(” — k). (12)
with the frequency domain approach such as a performance limi- o

tation and a mismatch of the block processing. Since a simplified i . .
ICA network can be used to process decimated input signals at 1 he filter bank approach to ICA can be applied to the adaptive

the subsampled rate in each subband, computational complexity1CiS€ cancelling system. The primary and the reference input sig-
is considerably reduced for a long adaptive filter length. Let's as- nals are spllt into subban.d signals by analysis filters, and all input
sume that we havé, adaptive filter coefficients for the fullband ~ Subband signals are decimated by faqtér In each subband, an

time domain approach. Then, approximately, multiplications adaptive filter is independently adjusted withqut any information
are required to compute outputs of the ICA network and update Of other subbands. Then, the system outp(ut) is reconstructed
the filter coefficients. On the other hand, approximately/ M from noise-cancelled subband output signals via synthesis filters

filter coefficients in each subband for the filter bank approach are after expansion. The adaptation algorithm in each subband is es-

sufficient to span corresponding time ranges of the fullband time Sentially same as the learning rule in eq. (11). In addition, noise

domain approach with decimation factdf. For a large number ~ cOmponents in the primary input signal are cancelled using the

of the adaptive filter coefficients, the computational load to com- "€férence input signal, and the desired signal is observed in the

pute subband signals and reconstructed signals is negligible be2UtPut without distortion. Therefore, the filter bank approach to

cause the adaptive filter length is much greater than the analysish® adaptive noise cancelling does not have permutation and scale

filter lengths and the synthesis filter lengths. For real input signals, ndeterminacy which ICA generally has.

we need to keep only lower half subbands of a uniform GDFT filter

bank since the remaining parts become complex conjugates. With 5. EXPERIMENTAL RESULTS

a K-channel oversampled filter bank, approximate total number of

multiplications,Nys, is We have performed experiments on the adaptive noise cancelling
with the proposed filter bank approach. Two real-recorded speech

Npp ~ 1 4. K 9. La (10) data were used as the signal and the noise sources. Each signal had
M 2 M 10 second length at k&7 z sampling rate. It is known that speech

because one complex multiplication equals to four real multipli- signal approximately follows Lapla_man dlstrlbu_tlon. Therefore,
sgn(-) was used as the score functipf-). Experimental results

cations, and the filter bank approach processes signals at the sul h mpared in terms of sianal-to-noise ratio (SNR). which
sampled rate in each subband. Therefore, the number of multj- €€ compared in terms or signal-to-noise ra io ( ), which we

. . . : define as the power of components caused by the signal source
plications for the filter bank approach is approximately /N2 - >
times as large as that of the fullband time domain approach. versus that caused by the noise source at the oufput in the

Each subband can independently compute subband output sigwp'cal adapiive noise cancelling system,

nals and adapt filter coefficients of the ICA network without other ((s(n))?)

subbands. So, the filter bank approach is apt to parallel process- SNR = Ve (13)
. " : ro(n) — 35—y w(k)ri(n —k))?)

ing. Additionally, the approach is able to choose the number of {( k=1

subbands regardless of reverberation. Because it uses input signals - The mixing filters from the signal source to the primary in-

more whitened by decimation than the fullband time domain ap- put and from the noise source to the reference input were simple
proach, it improves convergence of the adaptive filter coefficients jinear scales. The scale values were chosen to obtain desired ini-

of the ICA network. tial SNRs. For the mixing filter from the noise source to the pri-
mary input, we have used a measured filter in a normal office room
4. ADAPTIVE NOISE CANCELLING BASED ON THE as shown in Fig. 2. Assuming that the primary and the reference
FILTER BANK APPROACH inputs receive signals with appropriate powers, we have normal-

ized mixture powers properly (generally to 1), and this prevents
Adaptive noise cancelling is an approach to reduce noise based orsevere mismatching between recovered signal levels and the non-
reference signals [10]. In conventional adaptive noise cancelling linear function. (We have not normalized mixture powers to match

systems, the primary input signal is a combination of sigital) output levels exactly with the nonlinear function.) All experiments
and noiserq(n) in which the signals(n) is transmitted over a  were conducted with several step sizes, and the best performance
channel from a signal source to a sensor and a ngise) is added is shown.

in the sensor from a noise source. Another sensor receives a noise  Fig. 3 shows the frequency response of analysis filters of an
signalry (n) through another channel from the same noise source, eight-channel oversampled filter bank using the GDFT. The filter
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Fig. 2. The mixing filter measured in a normal office room
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Fig. 3. Frequency response of analysis filters of a uniform eight-

channel oversampled filter bank

bank was designed for alias-free decimation by fagtor 6, and
it was constructed from a prototype filter with 192 taps.

Fig. 4 shows a learning curve of the proposed filter bank ap-
proach to adaptive noise cancelling with the oversampled filter
bank above. The number of taps of the adaptive filter coefficients
was [1921] in each subband. For comparison, we have also ap-

M

plied the time domain and the frequency domain approaches to the
adaptive noise cancelling and displayed learning curves in Fig. 4.
We have used 1024 taps of the adaptive filter coefficients for the
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Fig. 4. Learning curves of the three different approaches to adap-
tive noise cancelling

complexity and faster convergence speed than the time domain ap-
proach. Adaptive parameters can be adjusted without any infor-

mation of other subbands by performing the filter bank approach

with an oversampled filter bank. Therefore, the approach is suit-

able for parallel processing. Simulation results on adaptive noise

cancelling showed the effectiveness of the filter bank approach.
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