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ABSTRACT

We present a new gradient algorithm to perform blind
signal separation (BSS). The algorithm is obtained by
taking a trade-off between the ordinary gradient algo-
rithm and the natural gradient algorithm. It provides
a better performance than the ordinary gradient al-
gorithm and is free from small-step-size restriction of
the natural gradient algorithm. In addition, the al-
gorithm has less computation than the other gradient
algorithms. For theoretical support of our algorithm,
local stability on desired solutions is proven for a simple
network. Simulation results indicate that the algorithm
efficiently provides a solution for BSS.

1. INTRODUCTION

Blind signal separation (BSS) is to estimate source sig-
nals from their linear mixtures without resorting to any
prior information. Although the term ‘blind’ means
that prior information is not available, many BSS al-
gorithms rely on statistical independence of source sig-
nals [1, 2]. BSS has received extensive attention in
signal and speech processing, machine learning, and
neuroscience communities.

Although many researchers have proposed algorithms
to perform BSS, most of them are batch-type and not
appropriate to on-line separation. In many practical
applications, however, all mixing data are not given
in advance, and outputs have to be immediately pro-
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vided for each input sample. Furthermore, most of al-
gorithms have difficulties in separating convolved mix-
tures or dealing with natural source signals which have
correlation among time samples because they have been
proposed to separate instantaneous mixtures or whitened
signals [3, 4]. Among several approaches to BSS, an or-
dinary gradient algorithm for entropy maximization is
noticeable because of its simple and biologically plau-
sible formulation [5, 6]. However, the parameter space
is usually not orthogonal in Riemannian space, and the
ordinary gradient does not indicate the steepest ascent
direction for a desired solution. As a much more effi-
cient strategy, Amari et al. proposed the natural gra-
dient which can consider the relationship between a
non-orthogonal space and an orthogonal space [7, 8].
In addition, Cardoso and Laheld independently pro-
posed the same one called ‘relative’ gradient, and they
showed that it has the equivariance property [9].

The ordinary gradient algorithm has slow conver-
gence property and involves matrix inversion which is
computationally intensive. Although the natural gra-
dient algorithm is quite efficient and does not involve
the matrix inversion, it still has additional computa-
tion such as matrix multiplication for instantaneous
mixtures or convolution for convolved mixtures. Es-
pecially, the natural gradient algorithm has a serious
problem to deal with convolved mixtures. The exact
form of the natural gradient algorithm for BSS of con-
volved mixtures involves non-causal terms and requires
very intensive computation. To remove the non-causal
terms and reduce the computational complexity, one
has to approximate the algorithm on the assumption
of small filter coefficient changes for some time steps.



It forces to use a very small step size especially for a
large adaptive filter length and may cause a slow con-
vergence rate.

In order to obtain a better performance than the
ordinary gradient algorithm and overcome the disad-
vantages of the natural gradiet algorithm, we present
a new gradient algorithm as a trade-off between the
ordinary gradient algorithm and the natural gradient
algorithm. The algorithm maintains spatial and tem-
poral independence, and it has less computation than
the other gradient algorithms. Simulation results show
the efficiency of the algorithm. For theoretical support,
local stability on desired solutions of the algorithm is
proven for a simple network.

2. BLIND SIGNAL SEPARATION

The goal of BSS is to separate independent source sig-
nals from their linear mixtures. Let us consider a set of
unknown sources, s(n) = [s1(n), s2(n), · · · , sM (n)]T ,
such that the components si(n) are zero-mean and mu-
tually independent. Assume that a set of observations,
x(n) = [x1(n), x2(n), · · · , xM (n)]T , is obtained as a
linear combination of the unknown sources. Then, the
observations x(n) can be expressed as

x(n) = As(n), (1)

where A is an unknown full rank mixing matrix. The
task is to estimate the source signals by finding an un-
mixing matrix W, which is a permuted and rescaled
version of the inverse of the mixing matrix A. The
estimated signals

u(n) = Wx(n) (2)

are the original sources up to permutation and scaling.
Bell and Sejnowski proposed to learn the unmix-

ing matrix W by maximizing the entropy of y = g(u),
where g is a nonlinear function approximating the cu-
mulative density function (cdf) of the sources [5]. Or-
dinary gradient for maximizing the entropy leads the
following learning rule:

∆W ∝ [WT ]−1 − ϕ(u)xT ,

ϕ(u) =

[
−

∂p1(u1)
∂u1

p1(u1)
, · · · ,−

∂pM (uM )
∂uM

pM (uM )

]T

,(3)

where ϕ(·) is called as a score function, and pi(ui) de-
notes the probability density function (pdf) of ui.

A much more efficient way to learn the unmixing
matrix is to follow the natural gradient [7, 9]. In this
case, the natural gradient rescales the ordinary gradient
by post-multiplying it with WT W giving

∆W ∝ [I− ϕ(u)uT ]W. (4)

It is known that the natural gradient provides the most
efficient direction to update the unmixing matrix. Be-
cause the natural gradient algorithm does not involve
computationally intensive matrix inversion, it provides
a smaller computational load than the ordinary gradi-
ent algorithm.

3. A NEW GRADIENT ALGORITHM

We propose to use a ‘modified’ gradient algorithm,

∆W ∝ I− ϕ(u)uT , (5)

which takes a trade-off between the ordinary gradient
algorithm and the natural gradient algorithm. It corre-
sponds to the ordinary gradient algorithm multipled by
WT . Note that the algorithm maintains independence
among the estimated signals {ui} in eq. (5). Moreover,
the algorithm does not involve matrix inversion as well
as matrix multiplication with W. Especially, it may
be useful for hardware implementation because of its
simple form.

From the algorithm, removing the score function
ϕ(·) gives a second-order blind decorrelation learning
rule [10]. However, it is worthy of note that the modi-
fied gradient algorithm can obtain independent signals
from mixtures using higher-order statistics instead of
decorrlated signals.

There are 16 equilibrium points of the modified gra-
dient algorithm for 2 estimated independent signals and
2 observations assuming that the pdfs of the estimated
signals are Laplace functions. Because the estimated
signals are Laplace-distributed, sgn(·) is used as the
score function ϕ(·). The equilibrium points, at which
E[∆W] = 0, are

t11 = ±l1, t12 = 0, t21 = 0, t22 = ±l2, (6)
t11 = 0, t12 = ±l2, t21 = ±l1, t22 = 0, (7)

t11 = c11
2
3
l1, t12 = c12

2
3
l2, t21 = c21

2
3
l1, t22 = c22

2
3
l2,

cij = ±1,

2∏

i=1

2∏

j=1

cij = −1, (8)

where tij are elements of the overall matrix T = WA,
and the source pdfs are p1(s1) = l1

2 e−l1|s1| and p2(s2) =
l2
2 e−l2|s2|. Eq. (6) and (7) are separating states whereas
eq. (8) is not.

Let us examine local stability of these equilibrium
points. It is known that an equilbrium point is lo-
cally stable if the eigenvalues of J have negative real
parts [11, 12], where



J =




∂
∂w11

E[1− ϕ(u1)u1] ∂
∂w12

E[1− ϕ(u1)u1] ∂
∂w21

E[1− ϕ(u1)u1] ∂
∂w22

E[1− ϕ(u1)u1]
∂

∂w11
E[−ϕ(u1)u2] ∂

∂w12
E[−ϕ(u1)u2] ∂

∂w21
E[−ϕ(u1)u2] ∂

∂w22
E[−ϕ(u1)u2]

∂
∂w11

E[−ϕ(u2)u1] ∂
∂w12

E[−ϕ(u2)u1] ∂
∂w21

E[−ϕ(u2)u1] ∂
∂w22

E[−ϕ(u2)u1]
∂

∂w11
E[1− ϕ(u2)u2] ∂

∂w12
E[1− ϕ(u2)u2] ∂

∂w21
E[1− ϕ(u2)u2] ∂

∂w22
E[1− ϕ(u2)u2]


 . (9)

Here, wij are elements of the mixing matrix W.
Determinant of λI− J is

det(λI− J)
= λ4 + λ3{E[k1u2x2] + E[k2u1x1]}
+ λ2{E[k1u2x2]E[k2u1x1]}
+ λ{E[k1u2x2]E[k2u1x1]E[m1x1]

+ E[k1u2x2]E[k2u1x1]E[m2x2]
− E[k1u2x2]E[k2u1x2]E[m2x1]
− E[k1u2x1]E[k2u1x1]E[m1x2]}

+ E[k1u2x2]E[k2u1x1]E[m1x1]E[m2x2]
− E[k1u2x2]E[k2u1x2]E[m1x1]E[m2x1]
− E[k1u2x1]E[k2u1x1]E[m1x2]E[m2x2]
+ E[k1u2x1]E[k2u1x2]E[m1x2]E[m2x1]. (10)

In this equation, ki = limq→∞ q(1 − tanh2(qui)) and
mi = limq→∞ tanh(qui) since sgn(u) can be replaced
by limq→∞ tanh(qu), q > 0. Without finding roots of
det(λI − J) = 0, we can check with Routh-Hurwitz
criterion whether the eigenvalues of J have negative
real parts [13].

Conditions for local stability of the separating equi-
librium points are as follows:

a11a22 6= 0,
a12a21

a11a22
< 1, w11 > 0, w22 > 0

for the points
t11 = ±l1, t12 = 0, t21 = 0, t22 = ±l2, (11)

a12a21 6= 0,
a11a22

a12a21
< 1, w11 > 0, w22 > 0

for the points
t11 = 0, t12 = ±l2, t21 = ±l1, t22 = 0, (12)

where aij are elements of the mixing matrix A. Note
that any mixing matrix belongs to one of the condi-
tions in eq. (11) and (12). In addition, one can always
find an unmixing matrix in which w11 > 0 and w22 > 0
because of scale indeterminacy. Therefore, the modi-
fied gradient algorithm can obtain locally stable equi-
librium points which correspond to separating states.
In the same way, one can obtain conditions for local
stability of the equilibrium points which are not sepa-
rating states. The conditions show that the points are
not locally stable.

4. EXTENSION TO CONVOLVED
MIXTURES

One can extend the modified gradient algorithm to BSS
of convolved mixtures. If the mixing of source signals
involves convolution and time-delays,

x(n) =
K−1∑

k=0

Ak(n)s(n− k), (13)

where x(n) and s(n) are an observation vector and an
unknown source vector, respectively. Ak(n) denotes
a matrix composed of mixing filter coefficients. Let us
consider a feedforward network to separate signals from
convolved mixtures as

u(n) =
K−1∑

k=0

Wk(n)x(n− k), (14)

where adaptive filter matrices Wk(n) supposedly make
an output vector u(n) reproduce the source vector s(n).

Torrkola derived the ordinary gradient algorithm of
entropy maximization for convolved mixtures as [6]

∆Wk(n) ∝ (WT
0 (n))−1δk − ϕ(u(n))xT (n− k). (15)

On the other hand, the natural gradient algorithm,
which is the steepest ascent direction in Riemannian
space, is given by [8]

∆Wk(n) ∝ Wk(n)− ϕ(u(n))rT
k (n), (16)

where rk(n) =
∑K−1

l=0 WT
l (n)u(n − k + l). However,

it involves non-causal terms and very intensive com-
putation for computing all rk(n) at each time step.
Practically, the algorithm is modified by introducing a
K−1 sample delay to remove the non-causal terms and
reusing past results such that rk(n) ≈ r0(n−k), assum-
ing that Wk(n) ≈ Wk(n−1) ≈ · · · ≈ Wk(n−2K +2).
With these changes, the algorithm is

∆Wk(n) ∝ Wk(n)−ϕ(u(n−K + 1))rT (n− k), (17)

where r(n) =
∑K−1

l=0 WT
K−1−l(n)u(n − l). With the

assumption of Wk(n) ≈ · · · ≈ Wk(n− 2K + 2), the
algorithm has to use a very small step size especially
for a large number of adaptive filter taps in order to



converge on a proper solution stably. Therefore, it may
cause a slow convergence speed.

To separate convolved mixtures, extending the mod-
ified gradient algorithm in eq. (5) gives

∆Wk(n) ∝ Iδk − ϕ(u(n))uT (n− k). (18)

The algorithm maintains spatial and temporal inde-
pendence, and it does not involve matrix inversion. In
addition, it does not have to use a very small step size
and compute additional convolution such as computa-
tion of r(n) in the natural gradient algorithm.

All above algorithms have indeterminacy of the es-
timated signals up to permutation and arbitrary filter-
ing. Entropy maximization tries to make the outputs
temporally whitened, which may degrade outputs in
many applications. Whitening the estimated outputs
can be avoided by forcing direct filters, Wii(z), to scal-
ing factors. Here, Wii(z) are the filters composed of
diagonal elements of adaptive filter matrices Wk(n).

5. EXPERIMENTAL RESULTS

5.1. Simulations on instantaneous mixtures

The modified gradient algorithm was compared with
others for instantaneous mixtures. To measure per-
formances of the algorithms, we have used the perfor-
mance index which gives a lower value for a better per-
formance [7]. Fig. 1 shows the performance indices for
2000 randomly generated 2 × 2 mixing matrices with
Laplace-distributed source signals, each of which con-
sists of 160000 i.i.d. samples. We have chosen identity
matrix for the initial unmixing matrix.

The natural gradient algorithm provided satisfac-
tory performances for all simulated mixing matrices.
This supports the equivariance property of the natural
gradient [9]. The modified gradient algorithm failed to
separate signals for some mixing matrices, but it could
separate much more signals than the ordinary gradi-
ent algorithm. The poor performances mostly came
from ill-conditioned mixing matrices. Note that the
modified gradient algorithm successfully separates sig-
nals except some ill-conditioned mixing matrices and
provides a simpler formulation than the other gradient
algorithms.

Fig. 1(d) shows the performance indices for the al-
gorithm proposed by Ling et al. [14]. The algorithm is
similar to the Jutten-Hérault algorithm [15] and corre-
sponds to the modified gradient algorithm with fixed
diagonal elements of the unmixing matrix W. Al-
though Ling et al. had not used sgn(·) as the score
function, we used it for its efficiency. However, the al-
gorithm failed to separate signals much more frequently
than the modified gradient algorithm.
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(a) Ordinary gradient algorithm

0 500 1000 1500 2000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

index of mixing matrices

pe
rf

or
m

an
ce

 in
de

x

(b) Natural gradient algorithm

0 500 1000 1500 2000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

index of mixing matrices

pe
rf

or
m

an
ce

 in
de

x

(c) Modified gradient algorithm
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(d) ∆wij ∝ −sgn(ui)uj , i 6= j

Figure 1: The performance indices of the algorithms
for instantaneous mixtures



5.2. Simulations on convolved mixtures

To perform experiments for convolved mixtures, real-
recorded speech signals were mixed with two different
mixing systems. One of them was [1]

A11(z) = 0.9 + 0.5z−1 + 0.3z−2,

A12(z) = −0.7z−5 − 0.3z−6 − 0.2z−7,

A21(z) = 0.5z−5 + 0.3z−6 + 0.2z−7,

A22(z) = 0.8− 0.1z−1. (19)

The other was [6]

A11(z) = 1− 0.4z−25 + 0.2z−45,

A12(z) = 0.4z−20 − 0.2z−28 + 0.1z−36,

A21(z) = 0.5z−10 + 0.3z−22 + 0.1z−34,

A22(z) = 1− 0.3z−20 + 0.2z−38. (20)

To deal with the mixing systems, 40 and 100 taps were
used for unmixing of the first and the second systems,
respectively. In addition, to avoid whitening of the
estimated signals, we have forced direct filters of the
unmixing systems, Wii(z), to scaling factors. Each
speech signal had 10 second length at 16kHz sampling
rate. It is known that speech signal approximately
follows Laplacian distribution. Therefore, sgn(·) was
used as the score function ϕ(·). Experimental results
were compared in terms of interference reduction ratio
(IRR), which is defined as difference between signal-
to-interference ratios (SIRs) of the final and the initial
unmixing systems. The SIR is a ratio between the sig-
nal source power over the interference source power at
the outputs,

SIR =
1
2
· 10 log

∣∣∣∣
< (u1,s1)

2 >

< (u1,s2)2 >
· < (u2,s2)

2 >

< (u2,s1)2 >

∣∣∣∣ (21)

for 2×2 mixing/unmixing system [16]. In eq. (21), uj,si

denotes the jth output of the cascaded mixing/unmixing
system when only si is active. As the initial unmixing
system, we have chosen identity system without delay.
All experiments were conducted with several step sizes,
and the best performance is shown.

Fig. 2 displays the IRRs of the three gradient al-
gorithms for the two different mixing systems. Each
signal was divided into 8 intervals, each of which had
20000 samples. We repeated adaptation with the in-
put mixed signals for 10 times. Therefore, there were
80 intervals on the horizental axis of each figure.

For the two experiments, the modified gradient al-
gorithm showed better IRRs than the other gradient al-
gorithms. The natural gradient algorithm did not pro-
vide good performances because it had to use a very
small step size in order to converge on a desired so-
lution stably and accumulated errors of the adaptive
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Figure 2: The IRRs of the algorithms for convolved
mixtures

unmixing filter coefficients to r(n). As the case of in-
stantaneous mixtures, the ordinary gradient algorithm
gave inferior performances to the modified gradient al-
gorithm. It is worthy of note that the modified gradi-
ent algorithm has less computation and better perfor-
mances than the other gradient algorithms.

6. CONCLUSION

In this paper, we proposed a modified gradient algo-
rithm to perform BSS. By taking a trade-off between
the ordinary gradient algorithm and the natural gradi-
ent algorithm, the algorithm provided a better perfor-
mance than the ordinary gradient algorithm and over-
came the disadvantages of the natural gradient algo-
rithm such as restriction to a small step size. Further-
more, the algorithm gave a simpler formulation than
the other gradient algorithms. We also proved that
the algorithm was locally stable for a 2× 2 network to
separate instantaneous mixtures.
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A. APPENDIX

From a standpoint, the modified gradient algorithm
can be derived from a risk function using Kullback-
Leibler divergence. In this case, the loss function L(W)
is given by

L(W) = −log|det(W)| −
M∑

i=1

log pi(ui). (A.1)

An infinitesimal increment of the loss function for an
increment dW is

dL(W) = L(W+dW)−L(W) = −tr(dV)+ϕT (u)dVu.
(A.2)

where dV = dWW−1 is called as the modified differ-
ential matrix composed of transfer matrix W between
input vector x and output vector u. Minimizing the
loss function for the modified differential matrix gives
the modified gradient algorithm

∆W ∝ −dL(W)
dV

= I− ϕ(u)uT . (A.3)

Extending the derivation to convolved mixtures, one
obtains the modified gradient algorithm for convolved
mixtures. A feedforward network is used for separating
signals as

u(n) =
K−1∑

k=0

Wk(n)x(n− k) = W(z, n)x(n), (A.4)

where W(z, n) is a polynomial matrix in the time-shift
operator z−1. Here, the loss function becomes [8]

L(W(z, n)) = −log|det(W0(n))| −
M∑

i=1

log pi(ui(n)).

(A.5)
As the case of instantaneous mixtures, the modified
gradient algorithm is obtained by minimizing the loss
function for the modified differential matrix which is
dV(z, n) = dW(z, n)W−1(z, n) as follows:

∆Wk(n) ∝ −dL(W(z, n))
dVk(n)

= Iδk − ϕ(u(n))uT (n− k).

(A.6)


