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The problem with the Hopfield associative-memory model caused by an imbalance between the number of ones and
zeros in each stored vector is studied, and a modification of the Hopfield model that works well irrespective of the
number of ones (or zeros) is proposed. This modified model can be implemented with no increase in memory.

Since Hopfield! introduced a model for associative
memory based on neural networks, there has been
increasing interest in associative memories.2-12
Through the use of the Hopfield model, information
can be stored and retrieved from partial information.
There exist, however, some limitations?-® that must be
overcome before the model can be realized. One of
these limitations is that the Hopfield model requires
each stored vector to have an approximately equal
number of ones and zeros. If there is an imbalance,
the model has a high probability of failure to find the
nearest neighbor.® Inthis Letter we propose a modifi-
cation of the Hopfield model that works well irrespec-
tive of the number of ones (or zeros).

The Hopfield neural-network model! consists of N
mutually interconnected neurons, whose current
states are characterized by a binary state vector v =
[v1, vg, . .., UN], with v; (1 or 0) denoting the state of
neuron i. A set of M state vectors vi™), each N bits
long, can be stored in the network with a strength ¢;; of
the interconnection between neuron i and neuron j,
given by
ijs

M
m=1

Li=L2...,N, (1)

where 6;; is a Kronecker delta function (if i = j, 6;; = 1;
otherwise, 6;; = 0). The next state of neuron i is
determined by the current state of other neurons as

1 ford; > w;

v;(next state) = { (2)

0 otherwise

where
N
01' = Z tUUJ (3)
j=1

and w, represents a fixed threshold value for neuron i.
Through this iterative procedure of determining the

0146-9592/88/010074-03$2.00/0

next state from the current state, an initial state vector
given by the input vector should converge to its near-
est neighbor among the stored vectors.

In order to implement the Hopfield model, we must
determine the threshold value w; for each neuron. Its
value may depend on the vectors already stored or
those that are to be stored. In previous publications!®
w; was chosen to be zero for all i, a choice based on the
assumption® that the number of ones and zeros in each
stored vector is nearly equal. However, in general,
this assumption will not be satisfied. In such cases it
is known that the convergence of the Hopfield model
to the nearest neighbor is poor.

When the number of ones in each stored vector
differs from vector to vector, we find that the vectors
with a large number of ones are more likely to become
final stable vectors. To illustrate this, we stored three
vectors, a, b, and ¢, each 20 bits long (see Table 1).
For the input vector the smallest Hamming distance
from vector ¢, the state vector was expected to con-
verge to the vector ¢ since it is the nearest neighbor of
the input vector. However, it converged to the vector

Table 1. Results of Computer Simulation with the
Hopfield Model

Stored vectors
a: 11110000111100001111
b: 10101000111011001000
c¢:  10100000100010001001
Input vector®
11000000000000000000
Retrieved vector?
11110000111100001111
Input vector®
10100000100010001001
Retrieved vector?
10100000111010001001

@ Smallest Hamming distance from vector c.
b Vector a.

¢ Vector e.

d False vector.
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a, which is the stored vector with the largest number of
ones. In cases when the number of ones in a stored
vector is much smaller than the number of ones in
other stored vectors, that stored vector may be unre-
trievable. The table also shows that when the vector ¢
is the input (6 ones), the state vector converges to some
false vector.

The large difference between the number of ones
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ij for1<i,j<N
forl<i—N,j=N
fori1<i,j—N=<N
forl<i—N,j—N<N

(8)
Then, by using Eq. (8), Eq. (7) may be rewritten as

—tinj — Mbi_y,
—tij-n— Mb;;_y

ti-Nj-N

Pt
Il

N
Z t;(2v;— 1)+ M;—1) forl<i<N
j=1 - (9

N

_Z ti—N,j(QU_f_l)_Mvi*N fOrN+15i52N

=1

and zeros also makes the convergence of the Hopfield
model poor even when all vectors have the same num-
ber of ones. To illustrate this, we stored three vectors
d, e, and f, each 20 bits long (see Table 2). When the
vector d was the input, it converged to a false vector
that differed from d by 5 bits, as shown in the table.

To overcome the problems caused by the imbalance
between the number of ones and zeros, we present a
modification of the Hopfield model. We double the
length of the vectors to be stored by adding a comple-
ment vector to each vector. Then the extended vector
u = [ug, U, . .., usy] is defined as

L forl<i<N
S R Rl 7S

for N+1<i<2N’
Application of the Hopfield algorithm to the vector u
results in a new memory matrix TV = [¢;/]:
M
tij, = Z [2ui(m) = 1](2uj(m} = 1) = Mﬁij,

m=1

(4)

Lid = 12000 52N (B)

The next state of u; is found from

— 1 fora; >0 ©)
u;(nex e) = )
i 0 otherwise
where
aN
=1

The number of ones in the coded vector u will al-
ways be equal to the number of zeros. Therefore ap-
plication of the Hopfield algorithm to the vector u
instead of to the vector v solves the problem caused by
an imbalance between the number of ones and zeros.
The algorithm given by Egs. (5)-(7) seemingly re-
quires an increase in memory space by a factor of 4.
However, it can be implemented with no increase in
memory, as we now describe.

By using Egs. (1) and (4), elements of the memory
matrix TV defined by Eq. (5) may be represented in
terms of elements of the matrix T = [t;]] as

With Egs. (6) and (9), the next state of the vector u can
be determined by the memory matrix T and the cur-
rent state of the vector v. As we know from Eq. (4),
the next state of u;, 1 <1 < N, will be the next state of
U;.
Based on the description given above, the model
that we propose may be summarized as follows: For a
given current state of the vector v and the memory
matrix T, the next state of the vector v is given by

— 1 forp; >0 (10)
L:(next state) = 2
g 0 otherwise
where
N
b, = Z t;(2v; — 1) — M(1 - v,). (11)

J=1

This modified algorithm will act as if the length of
the original vector were doubled so that the coded
vectors had an equal number of ones and zeros.
Therefore we overcome the problem in the Hopfield
model caused by an imbalance between the number of
ones and zeros simply by replacing Eq. (3) with Eq.
(11) in the determination of the next state of neuron i.
We simply replace v; by 2v;_; and subtract M(1 — v;),
the complement of the current state of neuron i multi-
plied by the number of stored vectors. Thus in the
modified model any neuron’s next state is affected by
its current state as well as by the current state of other
neurons. It is also worth mentioning that since the
modified algorithm is able to deal with vectors having

Table 2. Results of Computer Simulation with the
Hopfield Model

Stored Vectors
d: 00010010010000010010
e: 00100100000100100100
f:  01000001001001000001
Input vector®
00010010010000010010
Retrieved vector?
10011010110010011010

2 Vector d.
b False vector.
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Table 3. Results of Computer Simulation with the
Modified Model

Input vector®
11000000000000000000
Retrieved vector?
10100000100010001001
Input vector®
00010010000000000000
Retrieved vector?
00010010010000010010

@ Smallest Hamming distance from vector ¢; stored vectors same
as in Table 1.

b Vector c.

¢ Stored vectors same as in Table 2.

4 Vector d.

unequal numbers of ones and zeros, for a given memo-
ry size more information may be stored with the modi-
fied model than with the Hopfield model.

As is shown in Table 3, the modified algorithm
works well even for an initial state vector that does not
converge to its nearest neighbor in the Hopfield mod-
el. For example, the vector ¢, which previously could
not be a final state vector even when ¢ was an input,
becomes a final stable vector with the modified model.
An input vector of Hamming distance 6 from the vec-
tor ¢ also converges to the nearest-neighbor vector ¢
(see Table 3). Furthermore, for the examples shown
in Table 2 in which the number of ones in each stored
vector differs significantly from the number of zeros,
an input vector of Hamming distance 3 from the vector
d, as well as the vector d itself, converges to the near-
est-neighbor vector d with the modified model (see
Table 3).

Finally, it should be noted that we obtained the
same results found in Table 3 with the memory matrix
T clipped? [for t;; > 0, t;(clipped) = 1; for ¢; < 0,
tij(clipped) = —=1]. This makes implementation of the
model easier.

In conclusion, we have proposed a modification of
the Hopfield model that works well irrespective of the
number of ones in each stored vector. This modified
model can, in fact, increase the amount of information
stored for a given memory size.
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