Neural Networks 142 (2021) 397-409

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

L))

Check for
updates

Unsupervised multi-sense language models for natural language
processing tasks

Jihyeon Roh?, Sungjin Park?, Bo-Kyeong Kim ", Sang-Hoon Oh ¢, Soo-Young Lee **

4 School of Electrical Engineering and Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology, Daejeon, Republic of
Korea

b Information & Electronics Research Institute, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

¢ Division of Information and Communication Convergence Engineering, Mokwon University, Daejeon, Republic of Korea

ARTICLE INFO ABSTRACT

Article history:

Received 22 August 2020

Received in revised form 27 April 2021
Accepted 19 May 2021

Available online 25 May 2021

Existing language models (LMs) represent each word with only a single representation, which is
unsuitable for processing words with multiple meanings. This issue has often been compounded
by the lack of availability of large-scale data annotated with word meanings. In this paper, we
propose a sense-aware framework that can process multi-sense word information without relying
on annotated data. In contrast to the existing multi-sense representation models, which handle
information in a restricted context, our framework provides context representations encoded without
ignoring word order information or long-term dependency. The proposed framework consists of a
context representation stage to encode the variable-size context, a sense-labeling stage that involves
unsupervised clustering to infer a probable sense for a word in each context, and a multi-sense LM
(MSLM) learning stage to learn the multi-sense representations. Particularly for the evaluation of
MSLMs with different vocabulary sizes, we propose a new metric, i.e., unigram-normalized perplexity
(PPLu), which is also understood as the negated mutual information between a word and its context
information. Additionally, there is a theoretical verification of PPLu on the change of vocabulary
size. Also, we adopt a method of estimating the number of senses, which does not require further
hyperparameter search for an LM performance. For the LMs in our framework, both unidirectional and
bidirectional architectures based on long short-term memory (LSTM) and Transformers are adopted.
We conduct comprehensive experiments on three language modeling datasets to perform quantitative
and qualitative comparisons of various LMs. Our MSLM outperforms single-sense LMs (SSLMs) with the
same network architecture and parameters. It also shows better performance on several downstream
natural language processing tasks in the General Language Understanding Evaluation (GLUE) and
SuperGLUE benchmarks.
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1. Introduction Compared with classical count-based n-gram LMs (Kneser &
Ney, 1995), recent neural-network-based LMs (NLMs) (Bengio
et al., 2003; Jozefowicz, Vinyals, Schuster, Shazeer, & Wu, 2016;
Kim, Jernite, Sontag, & Rush, 2016) have performed better to
encode the relationships among words based on vector represen-
tations, also known as word embeddings. In particular, recurrent
neural networks (RNNs) (EIman, 1990), which can effectively pro-
cess long-term time dependency, have been spotlighted. Despite
their superior performance in several applications, most NLMs
simply learn a single embedding vector per word while neglecting
words that have different meanings depending on the context.
For example, multiple meanings of “apple” (i.e., the fruit or the
company) or “bank” (i.e., a financial institution or sloping land)

Language models (LMs) have been core elements in numerous
applications of natural language processing (NLP), e.g., language
modeling (Bengio, Ducharme, Vincent, & Jauvin, 2003; Mikolov,
Kombrink, Burget, Cernocky, & Khudanpur, 2011), machine trans-
lation (Cho et al., 2014), and speech recognition (Amodei et al.,
2016). LMs determine the probability of word sequences and are
designed to generate high-probability sequences that are both
semantically and synthetically meaningful. To achieve good per-
formance, LMs must accurately capture the relationships among
words and phrases in word sequences.
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are contained in one embedding and cannot be distinguished.
To address the ambiguity of word embeddings, previous stud-
ies have distinguished the meanings of multi-sense words based
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on their surrounding context. In many previous studies (Bar-
tunov, Kondrashkin, Osokin, & Vetrov, 2016; Li & Jurafsky, 2015;
Neelakantan, Shankar, Passos, & McCallum, 2014; Qiu, Tu, & Yu,
2016), a word with multiple senses has been explicitly embedded
into several distinct vectors (i.e., explicit sense vectors) for dis-
tributed representation models, such as continuous bag-of-words
(CBoW) (Mikolov, Chen, Corrado, & Dean, 2013) and skip-gram
(SG) (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) models.
There are some studies (Aharoni & Goldberg, 2020; Ansell, Bravo-
Marquez, & Pfahringer, 2021; Ma, Jin, Liu, Chen, & Yu, 2020)
that model explicit sense vectors using neural LMs. However,
these previously works suffer from several drawbacks. The com-
position of the context from distributed representation models
(i.e., word2vec models) readily captures word relationships but
has limited the number of neighboring words that comprise the
context (Bartunov et al., 2016; Li & Jurafsky, 2015; Neelakantan
et al,, 2014; Qiu et al,, 2016). In addition, due to the inclusion
of future words and neglecting of the order of words in the
context, it is difficult to directly apply the learned context rep-
resentations to language modeling tasks. Although predefined
topics help simplify the learning algorithm, it may produce some
meaningless (unnatural) representations (Aharoni & Goldberg,
2020; Neelakantan et al.,, 2014). Also, the mixing of word- and
sense-level tokens enables the optimization of the entire learning
process with a single model, but word-level tokens lead to ambi-
guity in the representation learning process (Ansell et al.,, 2021;
Li & Jurafsky, 2015; Ma et al., 2020; Neelakantan et al., 2014;
Zhao & Mao, 2017). Therefore, the performance improvement of
the multi-sense embedding was limited to simpler LMs and not
eminent for advanced LM models such as LSTM (Li & Jurafsky,
2015).

Recently, contextualized word embeddings (CWEs) have been
introduced to implicitly learn word representations based on the
context (Devlin, Chang, Lee, & Toutanova, 2019; Peters et al.,
2018; Radford, Narasimhan, Salimans, & Sutskever, 2018). These
methods are built on the basis of advanced neural networks, such
as LSTM networks (Hochreiter & Schmidhuber, 1997) and Trans-
formers (Vaswani et al,, 2017), and have achieved remarkable
performance on several NLP tasks. However, they still use one
embedding per word as the input, which leaves a very difficult
task of distinguishing multiple senses to the neural network
models.

In this paper, by combining the explicit unsupervised clus-
tering of multi-sense words with advanced NLMs, we propose a
flexible framework to achieve improved LM performance. Here,
we focus on two specific types of advanced NLMs, i.e., LSTM and
Transformer based networks, which have been actively explored
in the NLP field recently. Specifically, our framework consists
of 3 stages, i.e., (a) a context representation learning stage to
encode the variable-size context into a dense representation, (b) a
sense-labeling stage by unsupervised clustering to infer a probable
sense based on the learnt representation, and (c) a multi-sense
LM (MSLM) learning stage to learn multi-sense representations
with the inferred senses. Words with different inferred senses
are treated as different tokens and fed to either unidirectional
or bidirectional LMs. Both LSTM and Transformer networks are
implemented in the LMs.

We further estimate the number of clusters (senses) to im-
prove the robustness of the learning algorithm. To compare LM
performance given different vocabulary sizes, we present a new
evaluation metric, i.e., unigram-normalized perplexity (PPLu). We
demonstrate quantitative improvements over the single-sense
LM (SSLM) and recent CWE methods on the SemCor all-words
(SemCor), Penn Treebank (PTB), and Text8 datasets and several
downstream NLP tasks. Qualitative evaluations of the nearest-
neighbor words show the superiority of our MSLMs. Our contri-
butions are summarized as follows:
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We propose a novel framework for the effective integra-
tion of purely unsupervised word sense clustering with
sequence-based unidirectional or bidirectional NLMs.

We propose a new LM performance metric that is not af-
fected by vocabulary size.

We quantitatively and qualitatively demonstrate the supe-
riority of our multi-sense method over SSLMs on several
natural language understanding (NLU) benchmark tasks.

This paper is organized as follows. After reviewing the re-
lated works in Section 2, we introduce the proposed three-stage
learning framework in Section 3. The datasets and experimental
settings used are described in Section 4. Experimental results
on several datasets and tasks are presented and analyzed in
Section 5. Finally, our concluding remarks are summarized in
Section 6.

2. Related works

Since our study is based on LMs and multi-sense word mod-
eling, some relevant previous studies are reviewed here.

2.1. Statistical language models

The aim of statistical LMs is to compute the probability dis-
tribution of sequences in various language units (e.g., charac-
ters or words). These LMs can be classified into two categories,
i.e., count-based LMs and NLMs. Traditional count-based methods
generally estimate n-gram probability based on Markov assump-
tions using counting and smoothing techniques (Kneser & Ney,
1995). These LMs rely on patterns of symbolic token sequences,
in which the similarities among words are not considered. NLMs
solve this problem by using the distributed representation of
language units (e.g., word-embedding vectors).

NLMs have two main streams, i.e., finite-size n-gram NLMs
and sequence-based LMs. The n-gram NLMs were proposed to
solve the above problems of symbolic token counts (Bengio et al.,
2003; Cheng, Kok, Pham, Chieu, & Chai, 2014; Pham, Kruszewski,
& Boleda, 2016; Zhang, Jiang, Xu, Hou, & Dai, 2015). Additionally,
sequence-based LMs have increased the context size to almost
infinity (Jozefowicz et al., 2016; Mikolov et al., 2011; Vaswani
et al,, 2017). Unlike traditional methods, network parameters,
including word embeddings, are learned jointly in the learning
process.

The first approach for an n-gram NLM was to develop a neural
probabilistic LM (Bengio et al., 2003) built on a simple feed-
forward neural network (FNN). Based on (n — 1) previous words
an n-gram model produced a conditional probability distribution
of the next word. Then, a convolutional neural network (CNN)-
based LM (Pham et al., 2016) was proposed as an advanced model.
However, they take a fixed number of previous words as input,
and therefore n-gram NLMs face difficulty in processing distant
context information.

Conversely, sequence-based LMs were built with RNNs and/or
Transformer models to transfer information for a long time. For
RNNs each hidden state is represented by a composition of all
previous words, and the final hidden state may represent the
whole sentence. Recently, advanced forms of RNNs, such as LSTM,
have been used to reduce the vanishing gradient problem. Some
studies have proposed the application of several learning tech-
niques (e.g., variational dropout, weight tying, and augmented
loss function (Inan, Khosravi, & Socher, 2016)) to LSTM and added
caches that enhance information storage capacity (Grave, Joulin,
& Usunier, 2016).

Unlike previous works that utilize only word-level tokens,
some studies have incorporated subword information to repre-
sent words (Botha & Blunsom, 2014; Kim et al., 2016). For exam-
ple, a character-aware NLM (Kim et al., 2016) builds the structural
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characteristics of the words with CNNs, which take character-
level tokens as the input and generate outputs to LSTM-based
LMs.

An attention-based sequential modeling architecture, Trans-
former (Vaswani et al., 2017), has gained attention due to its par-
allel computation and interpretability. As representative
Transformer-based models, bidirectional encoder representations
from transformers (BERT) (Devlin et al, 2019) and generative
pretraining (GPT) (Radford et al., 2018, 2019) models pretrained
multi-layer Transformers on a large corpus and demonstrated
superior performance on many language processing tasks for
much longer sequences. A variety of BERT and GPT variant mod-
els, like XLNet (Yang et al, 2019), have emerged. Our work
focuses on LSTM-based and Transformer-based LMs to address
long-term context information. However, the embedding ambi-
guity of multi-sense words still remains. To alleviate this limita-
tion, we combine the multi-sense word embedding method with
sequence-based NLMs.

2.2. Modeling multi-sense words

Several approaches have been proposed for modeling multi-
sense words (Bartunov et al., 2016; Guo, Che, Wang, & Liu, 2014;
Li & Jurafsky, 2015; Neelakantan et al., 2014; Qiu et al., 2016;
Reisinger & Mooney, 2010; Song, Wang, Mi, & Gildea, 2016). In
sense representation, each sense of a word needs to be rep-
resented differently depending on its context. Related studies
can be classified into three categories, i.e., supervised learning
methods with a sense-annotated corpus, knowledge-based dis-
ambiguation methods, and unsupervised learning methods.

Studies using supervised learning methods have focused on
learning the word sense disambiguation (WSD) from
examples. These works (Melamud, Goldberger, & Dagan, 2016;
Yuan, Richardson, Doherty, Evans, & Altendorf, 2016) map
words to their related senses using a sense-annotated corpus.
Knowledge-based research has begun to achieve good progress
in the development of large lexical resources such as Word-
Net (Miller, Beckwith, Fellbaum, Gross, & Miller, 1990) and Ba-
belNet (Navigli & Ponzetto, 2012). For example, translation-based
methods (Guo et al,, 2014), which rely on a bilingual parallel
database, have shown good performance in word sense induction.
However, difficulties have arisen in applying knowledge-based
methods to languages with insufficient lexical resources. Both
supervised learning methods and translation-based methods have
encountered difficulties in obtaining the training data. Due to
these difficulties, our work focuses on an unsupervised learn-
ing method that requires only a monolingual database without
multi-sense annotation.

Unsupervised learning methods aim to assign proper multiple
senses for a multi-sense word from unannotated text data. These
works infer multiple senses of words, including the types of
words (e.g., nouns and verbs) used in the WSD task. Even if the
meaning of a word has changed over time, these methods can
cope with the change. They usually consist of two parts. The first
part involves defining a context for a word and computing its
context representation. The second part involves grouping con-
text representations according to their similarity and relabeling a
word token with one of several corresponding senses.

While the studies reported in Ansell et al. (2021), Ma et al.
(2020), Neelakantan et al. (2014), Reisinger and Mooney (2010)
considered a fixed number of sense representations for all words,
there were a few studies that used different numbers of sense
representations for each word. The nonparametric multi-sense
skip-gram (MSSG) model (Neelakantan et al., 2014) and skip-
gram (SG) with the Chinese restaurant process (CRP) (Li & Ju-
rafsky, 2015) determine the number of senses for each word.
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Zhao and Mao (2017), Jain, Bodapati, Nallapati, and Anandkumar
(2019), and Panigrahi et al. (2019) assigned one of the predefined
topics to each word to distinguish the meanings of the multi-
sense words, where the topic is derived from topic modeling
methods such as latent dirichlet allocation (LDA) (Blei, Ng, &
Jordan, 2003). Panigrahi et al. (2019) utilized a generative model
and topic distribution to learn an interpretable word sense rep-
resentation. Aharoni and Goldberg (2020) proved the existence
of clusters in pretrained LMs that capture domain-specific in-
formation contained in a sentence. These results justified the
replacement of the sense with a topic. PolyLM (Ansell et al., 2021)
added the disambiguation encoder to the vanilla Transformer
encoder. The disambiguation encoder was designed to represent
the subword as the weighted sum of the predefined senses and
to allocate the correct sense to each subword.

Our proposed framework differs from the abovementioned
works. First, previous works (Bartunov et al., 2016; Neelakantan
et al,, 2014; Qiu et al.,, 2016; Song et al., 2016) computed context
representations by averaging word embeddings within a local
context of a fixed window size while ignoring any words outside
this window. In our framework, the applied sequence-based LMs
utilize the full context length with word order information. Sec-
ond, one previous study (Guo et al., 2014) considered contexts
only from previous words, while we integrate multi-sense words
into LMs with both unidirectional and bidirectional LSTMs and
Transformers. Third, our framework does not require any topic
modeling and predefined topics used in previous works (Aharoni
& Goldberg, 2020; Jain et al., 2019; Panigrahi et al., 2019).

Another group of methods based on CWEs (Dai et al.,, 2019;
Devlin et al., 2019; Peters et al., 2018; Radford et al., 2018; Yang
et al., 2019) focuses on representing the meaning of a word by
using its context and does not require an explicit sense induction
step. The methods in these studies relied on the implicit modeling
of the senses of words using LMs and outperformed previous
methods for recent downstream NLP tasks.

In the embeddings from LMs (ELMo) (Peters et al., 2018), CWEs
are obtained from a bidirectional LM based on character-level
LSTMs. A linear combination of representations from each hidden
layer is used as the context representations. Unidirectional or
bidirectional Transformer-based models such as GPT and BERT
represent CWEs by encoding context information through an at-
tention analysis of neighboring words. There have been a number
of other methods based on CWE for the word sense disambigua-
tion task (Huang, Sun, Qiu, & Huang, 2019; Vial, Lecouteux, &
Schwab, 2019). However, these works do not produce explicit
sense representations.

The aforementioned works share the same philosophy with
our work. Both works aim to encode word senses from context
information in LM. However, we explicitly separate the multi-
sense disambiguation stage from the LM stage. By making each
stage separate, we are able to easily adopt any state-of-the-art
LMs such as GPT, BERT, and XLNet. In addition, for downstream
NLP tasks, it is possible to import only the pretrained sense
embeddings into task-specific networks, whereas all hidden-layer
features of the pretrained LM are readily available without many
additional computational costs.

3. Method

Fig. 1 depicts our proposed framework, which consists of
three main stages, i.e., context representation via single-sense LM
learning in Stage 1, sense labeling via unsupervised clustering in
Stage 2, and multi-sense LM learning in Stage 3. Stage 1 encodes
the context information of a word into a single representation.
Stage 2 determines the sense of a word among its possible senses
given its context representations. The context representations
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Context representation learning

P(apple|wyy)

Sense labeling
via clustering
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Multi-sense language model learning

word ‘bank’

(a) Stage 1

(b) Stage 2

-
\ P(apple lwitt) P(wWikalwiiss
companies includingjapple, w™
P(apple,|wity) P(weka Wit +1)
J with {one | apple, w™
\. J

(c) Stage 3

Fig. 1. The proposed framework consists of three stages. (a) In Stage 1, a single-sense LM learns context representation vectors (henex(w®)) from word tokens w®
(i.e., a single sense per word). (b) In Stage 2, the learned context vectors of each multi-sense word in a training corpus are split up by an unsupervised clustering
algorithm to create several new word-sense tokens w™, e.g., “apple;” and “apple,”. For simplicity, the number of clusters, K, is shown to be 2. (c) In Stage 3, a
multi-sense LM learns context representation vectors from the word-and-sense tokens, w™. Although these clustering in (b) and multi-sense LM learning in (c) may
be repeated for iterative refinement, results from only one learning cycle are reported in this paper.

from Stage 1 are grouped depending on their similarity in Stage
2, where one word is assumed to have an arbitrary K number
of senses (i.e., word meanings). Stage 3 encodes the clustered
inferred word senses via another LM learning. Various neural LMs
can be utilized in Stages 1 and 3.

Stage 1 uses a single representation per word that is associated
with word-level tokens w®, while Stage 3 uses a multi-sense
representation that is associated with sense-level tokens w™,
e.g., apple; or apple; in Fig. 1(c) for the word “apple”. In Stages
1 and 3, either a unidirectional or bidirectional LM can be used
based on either LSTMs or Transformers. In the following section,
we denote vocabulary in uppercase italics V* and V™ for the
single-sense and multi-sense representations, respectively. Each
word sense is assumed to have one index within the vocabulary.
The whole procedure is summarized in Algorithm 1.

Algorithm 1: Multi-Sense LM Algorithm

: # Stage 1

: Optimize a single-sense LM with a vocabulary (v, ..., U\SVSI)
. # Stage 2

: for v* in vocabulary V* do

# Compute context vectors of v for all R, occurrences in
the corpus

.U_'1>J>WN'—\

6: Hy = {heontext (v°(1)), - . ., Deontexe (V(Ry))}

7: Compute uj, ..., R, using k-means clustering on H,

8: Assign a cluster as z,(r) = argmin,_; ,<v||hcomext(v5(r))
— |

9: end for

10: # Stage 3

11: Initialize multi-sense vocabulary (v7, ..., v"(}m‘) by expanding

all z,(r) into one-dimensional array

12: Replace all single-sense tokens w3, with multi-sense tokens
wl in the corpus
13: Optimize a multi-sense LM with a new vocabulary

(O] s Vo)

400

3.1. Stage 1: Context representation via single-sense LM learning

Fig. 1(a) depicts the unidirectional LM for learning context
vector representations. A context vector is a representation that
encodes the meaning of a word. For a word w; at time t in a sen-
tence wy.r = {wi, ..., wr}, its context vector often summarizes
all other words, which include past words {wi, ..., w; 1} and
future words {w¢1, ..., wr}. Vocabulary size |V¥| is the number
of unique words that appear in the training corpus. Depending
on how to define the context, Stage 1 can be built upon either
a unidirectional LM using only past words or a bidirectional LM
using both past and future words.

When token wyj is a word, v, in V* at time ¢, the input to the L-
layer LM is an N-dimensional single-sense word representation,
X;, which is one column of the single-sense embedding matrix
X € R¥*IV’I At each time step t at the [-th hidden layer, hidden
vector h! is calculated from lower-layer hidden vector h!~! and
the previous hidden state vector, h! . For the lowest layer, h?
is defined as representation vector X; of the t-th input word
ws. Then, ht can encode the processed historical information as
context vectors. The context vector representation for token wy is
denoted by

hcontext(wg) = h%71- (1)

One can easily extend this unidirectional LMs into bidirec-
tional LMs for the estimation of word embedding vectors. Bidi-
rectional LSTMs (BiLSTMs) are designed by implementing both
forward and backward LSTMs in parallel at each layer. BERT is
basically a Transformer-based bidirectional model without the
backward masking in GPT.

In Stage 1, a deep LSTM, a deep BiLSTM, a GPT, or a BERT
LM is trained to minimize the negative log-likelihood (NLL) of
the training sequence. As a result, one can obtain the implicit
and explicit features for the words, i.e., optimized context vector
heoneexe and single-sense word embeddings X.

3.2. Stage 2: Sense labeling via unsupervised clustering

Stage 2 is based on the philosophy of the context clustering
method used in the word sense induction task (Schiitze, 1998).
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As shown in Fig. 1(b), context vectors of a specific word are
grouped according to similarity through unsupervised clustering.
We adopt the k-means clustering algorithm, which is the most
intuitive and fastest method (Lloyd, 1982).

When a word v € V; occurs R, times in the corpus, the
set H, of context vectors with a word v is denoted by H, =
{heonexe (V(1))..., heonexe (V(Ry))}. The number of context vectors in
a word is the same as the number of times the word appears in
the corpus.

Given an M-dimensional set of R, data points (i.e., context
vectors) for a word v in H, € RM*Rv the algorithm divides these
points into K,(< R,) clusters.

After clustering convergence, the sense of word v for each oc-
currence in the training corpus is assigned to the cluster with the
closest centroid p; (k < K,) in terms of the Euclidean distance as

(2)

where heoneexe(v(1)) is the r-th context vector of word v, which
means that each word v is divided into K, tokens for multi-sense
LM learning in the next stage. Note that this clustering process
proceeds separately for each word.

In our experiments, we consider two options to set the num-
ber of clusters (senses) K,, i.e., a fixed number and different
numbers of clusters for each word. For the latter, we estimated
the number of clusters with the gap statistic method (Tibshirani,
Walther, & Hastie, 2001). A detailed analysis on this estimation
of cluster number is presented in Section 5.1.3.

z,(r) = arg mink:l..m,K,, Mcontext (v(r)) — ILE”’ (1<r=<R),

3.3. Stage 3: Multi-sense LM learning

Although the cluster means in Stage 2 were used for multi-
sense embedding vectors in previous works (Li & Jurafsky, 2015),
for improved performance we only use the multi-sense labels and
re-train LMs in Stage 3.

Stage 3 is very similar to Stage 1 with only one important dif-
ference. The input and output tokens in Stage 1 are single-sense
words, while those in Stage 3 are multi-sense tokens obtained
from Stage 2, which is equivalent to increasing the vocabulary
size from |V*| to |[V™| = Zvevs K,. Therefore, multi-sense tokens
w™ from the same word w*® now learn different representations
to become a multi-sense LM.

3.4. Performance metrics for the language modeling task

Perplexity (PPL) has been widely used as a performance metric
of LMs. Since PPL is based on the likelihood of a sentence, it is
sensitive to the number of words in the corpus. However, the
single-sense and multi-sense LMs from the same corpus result in
different vocabulary sizes, and we propose a new metric, i.e., the
unigram-normalized PPL (PPLu).

The PPL of an LM is defined as the length-normalized inverse
geometric average probability of word sequences and estimated
by

1
T

T _
1
PPL = P(wi, ..., wr) T = (]'[P(wnwm)) ,
t=1

where T is the length of a sequence, and w; is the word at time t
in a sentence. An LM that achieves a higher probability for word
sequences obtains a lower PPL value.

This PPL metric is suitable for comparing LMs with the same
vocabulary. However, PPL may not be suitable for comparing LMs

(3)
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with different vocabulary sizes. A larger vocabulary size tends to
result in lower word and sentence probabilities and thus in higher
PPL.

To overcome the limitation of PPL, we adopt the basic idea
of normalizing the word probability with respect to a quantity
containing the vocabulary size. The proposed PPLu is defined as

PPLu = (11[

t=1

1

P(we|wy—1) T
Pypi(wy)

_1
Lwr) T
>

(n;l Puni(wt)>7f

where T is the length of a sequence and the unigram probability
is computed as

_ P(w1, wy, ..

(4)

Count(vy)
4
K'=1
where Count(vg) is the number of occurrences of word vy in
the corpus. This metric shows the likelihood improvement of
a context-dependent LM from the simple unigram LM without
context information, and therefore enables us to evaluate the
effectiveness of a context-dependent LM.

From (4), we may interpret the PPLu in terms of the Kullback-
Leibler (KL) divergence and mutual information (MI) as

Pypi(wy = vi) = = P(wy),

(5)

Count(vy)

T

1 P(we|wie—1)
logPPLu = —— Y " log ———==17
s T ; ® 7 P(wn)

= —KL(P(w¢|w1:—1) || P(we))
T

1
T;log

KL(a || b) and I(a; b) denote the KL divergence of a from b and MI
between a and b, respectively. Utilizing the context information
w1.t_1, high-performance LMs make P(w;|wq.._1) diverge from
P(w;) and increase the amount of shared information between
we and wi.c—1. Therefore, PPLu becomes smaller for better LMs.

Additionally, we present how the proposed PPLu is affected
by the number of words in the corpus. We show a very simple
example in which a word v, is used confusingly for two words,
v, and vp. If a sentence does not include vy, the split does not
have an effect on either PPL or PPLu. If a sentence includes either
Vg Or vy as the rth word, then

(6)
P(we, wi:e—1)
P(we)P(wi:e—1)

= —I(we; wi—1).

1
log PPLu = —T[logP(wl, coo, Wy = (vg0r vp), ..., Wr)

T 7)
—{)_log P(wy) + log P(w; = (v, 0r vy))}].
t#tT

If word vg, actually has only one meaning and we randomly
assign vg or vy instead of vg, with probabilities 8 and (1-8),
respectively, then

P(va) = BP(vap), P(vp) = (1 — BIP(vap),

P(wy, ..., w; =g, ..., wr)= BP(wq, ..., W = Vgp, ..., W),
P(wy, ..., w; = vp, ..., wr)=(1—BP(wy, ..., wW; = Vgp, ..., Wr).
(8)
Therefore, for a sentence with v,
log PPLu = —%[logﬂ + logP(w1, ..., Wy = Vgp, ..., WT)
T (9)
—(>_log P(w;) + log B + log P(w; = vay)}].
4T

which is exactly the same as the PPLu value of the original case
without splitting. It is worth noting that the split makes log PPL
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increase by — log 8/T. Moreover, the same is true for sentences
with vp. In this case, although the vocabulary size is increased by
1, PPLu is invariant with the split of a word. Since the two words
v, and vy, are semantically identical, this simple split should not
result in a difference in LM performance.

If the word v, has multiple senses and is divided into multiple
tokens based on meaning, then the split is no longer random,
and g, the ratio of P(..., w; = vg,...) to P(..., w;j = vgp, ...), iS
no longer a fixed constant and depends upon the other words in
the sentence. Therefore, PPLu values with and without the split
become different. Since PPLu is invariant with the vocabulary size
and is only a function of the mutual information between w;
and wq.¢_1, the difference in value of PPLu purely comes from
LM performance. It is straightforward to extend this analysis to
multiple splits and many multi-sense words.

4. Data and experimental settings
4.1. Datasets

To validate our method in LM performance, we used three
benchmark language modeling datasets, i.e., the SemCor (Miller,
Leacock, Tengi, & Bunker, 1993), PTB (Marcus, Marcinkiewicz, &
Santorini, 1993), and Text8 (Mikolov, Joulin, Chopra, Mathieu,
& Ranzato, 2014) datasets. Also, eight NLP tasks of the General
Language Understanding Evaluation (GLUE) benchmark (Wang
et al., 2018) and the three tasks of the SuperGLUE (Wang et al.,
2019) benchmark were evaluated.

The three language modeling datasets differ in their number
of tokens and vocabulary sizes, as summarized in Table 1. The
SemCor dataset contains text data extracted from the Brown Cor-
pus and their sense annotation from the New Oxford American
Dictionary (NOAD) or WordNet inventory. The SemCor dataset
was selected due to its availability of human-annotated multi-
sense labels. The PTB dataset is a subset of the Wall Street Journal
(WS]J) dataset, which contains news articles on business-oriented
topics. The Text8 dataset is derived from a Wikipedia dump and
contains much broader topics compared to the PTB dataset.

The GLUE benchmark includes nine general NLP tasks, i.e., two
single-sentence classification tasks, such as CoLA (Warstadt, Singh,
& Bowman, 2019) and SST-2 (Socher et al., 2013), and seven
sentence-pair classification tasks, such as MRPC (Dolan & Brock-
ett, 2005), QQP, STS-B (Cer, Diab, Agirre, Lopez-Gazpio, & Specia,
2017), MNLI (Williams, Nangia, & Bowman, 2018), QNLI (Ra-
jpurkar, Zhang, Lopyrev, & Liang, 2016), RTE (Dagan, Glickman,
& Magnini, 2005), and WNLI (White, Rastogi, Duh, & Van Durme,
2017). We evaluated our models on eight tasks (i.e., SST-2, MRPC,
QQP, MNLI, QNLI, RTE, CoLA, and STS-B). For the WNLI task, no
model in the literature exceeded the most frequent class guessing
(56.3%), and it may not be worthwhile to report results in this
paper. Additionally, we evaluated our models for three tasks
in SuperGLUE benchmark. All of these tasks are sentence-pair
classification tasks. Specifically, BoolQ (Clark et al., 2019) and
MultiRC (Khashabi, Chaturvedi, Roth, Upadhyay, & Roth, 2018) are
a QA-based task, and WiC (Pilehvar & Camacho-Collados, 2019)
is a word sense disambiguation task. The other tasks are either
based on tiny datasets or almost the same as that in GLUE.

4.2. Selection of multi-sense words

Stage 2 needs to identify which words may have multiple
senses. However, such ground-truth annotations do not exist in
most text datasets, including the PTB and Text8 datasets, and hu-
man annotation requires considerable effort. For computational
efficiency, we removed two types of words from the multi-sense
word candidates. First, we excluded stop words (i.e., words with
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Table 1

Data statistics for language modeling datasets. |V| is the vocabulary size, and |T|
is the total number of tokens in the dataset. The SemCor dataset has annotated
sense labels by human experts for all data.

Dataset 14 IT|
SemCor all-words (SemCor) (Miller et al.,, 1993) ~10 k 043 M
Penn Treebank (PTB) (Marcus et al., 1993) 10 k 1M
Text8 (Mikolov et al., 2014) ~44 k 17 M

very little meaning such as “is” and “are”). In employing the stop
word list in the NLTK toolkit (Loper & Bird, 2002), we removed the
stop words that accounted for approximately 50% of the overall
data in each dataset (e.g., corresponding to 132 stop words for
the PTB dataset). Second, we excluded rarely appearing words for
effective clustering with enough samples. After these exclusions,
the remaining 1854 words for the PTB dataset, 1755 words for
the SemCor dataset, and 11,147 words for the Text8 dataset were
used as possible multi-sense words. Note that Stages 1 and 3 still
utilized all the words in the corpus.

4.3. Network architecture

In Stages 1 and 3, LMs with multi-layer LSTM or Transformer
modules are incorporated. For some implementations the word
embedding dimension is specified with “-W” prefix in the model
name, e.g., LSTM-W650. The dimension of hidden representation
is the same as that of word embedding. For each dataset, we
examined various architectures and hyperparameters, i.e., em-
bedding dimensions and sense numbers.

5. Experimental results

In this section, we perform the language modeling task on the
SemCor, PTB, and Text8 dataset, and the NLU tasks on the GLUE
and SuperGLUE benchmarks.

For all experimental results, we conduct Welch’s t-test to iden-
tify the statistically significant differences in the results between
the models with single-sense tokens and multi-sense tokens for
the same network. We mark star(*) when significant difference
(P < 0.05) occurred.

5.1. Performance on the language modeling task

For each dataset, we report the results of two LSTMs with dif-
ferent word embedding dimensions. Following Kim et al. (2016),
we train LSTM with two hidden Ilayers via truncated
backpropagation-through-time. We use stochastic gradient de-
scent with backpropagation for 35 time steps. Additionally, for
the Text8 dataset, we add Transformer-based unidirectional LM,
i.e., GPT-2, with a similar number of parameters. We train a 12-
layer network with 12 attention heads. Following Radford et al.
(2019), we used Adam optimizer with a 0.0001 max learning
rates.

5.1.1. Results on a fixed number of senses for all words

The SemCor dataset is small but has human-annotated la-
bels for multiple senses. Because no previous LM method has
been evaluated on the SemCor dataset, we compared our LSTM-
based methods of several different sense numbers, i.e., all single
sense, all 5 senses, exact number of senses for each word, and
exact sense labels. The third and fourth are possible due to
the existence of the ground-truth multi-sense labels. Here, we
construct small models due to the size of the SemCor dataset
and, as expected, the model with 400 embedding dimension re-
sults in much better performance than that with 100 embedding
dimension.
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Table 2

Performance on the SemCor dataset. The bold font indicates the best unigram-
normalized perplexity (PPLu) for the same model. Here, “Exact Numbers” and
“Exact Labels” denote the MSLMs with the exact number of senses (K) for each
word and the exact sense labels in the dataset, respectively. Star(*) indicates
significant difference (P < 0.05) between single-sense and multi-sense models
with the same network. PPL is not designed to compare LM performance
between different vocabulary sizes, and is shown for reference only.

Model Number of senses Metrics
PPL PPLu

LSTM-W100 1 for all 116.5 0.2491
5 for all 142.9 0.2137*
Exact Numbers 137.8 0.1934"*
Exact Labels 142.2 0.1969*

LSTM-W400 1 for all 102.6 0.2195
5 for all 134.1 0.2005*
Exact Numbers 130.1 0.1824"
Exact Labels 131.7 0.1848*

It is worth noting that the multi-sense LMs inherently use a
larger vocabulary size than the single-sense LMs, and thus result
in higher PPL values. The PPL values of multi-sense LMs with the
exact labeled senses are still much larger than those of single-
sense LMs, which proves that PPL is not a good measure for
comparing LM performance between two datasets with different
vocabulary sizes.

In terms of the proposed PPLu measure, as expected, the
multi-sense LMs show much better performance than the single-
sense LMs with the same embedding dimension. Compared to
the single-sense LMs the multi-sense LMs with 5 sense clusters
for all words reduce PPLu by 14.2% (from 0.2491 to 0.2137) and
8.7% (from 0.2195 to 0.2005) for the word embedding dimensions
of 100 and 400, respectively. Then, the multi-sense LMs using
the exact number of senses for each word further reduce PPLu
by another 9.5% (from 0.2137 to 0.1934) and 9.0% (from 0.2005
to 0.1824), respectively. The LMs with exact sense labels are
expected to be the best, but are slightly worse than those from
exact sense numbers. The difference is within the error margin
of the model and small dataset, which shows that our clustering
algorithm results in almost optimal clusters. This result implies
that the precise estimation of the number of senses can improve
LM performance.

Additionally, Table 2 shows that the PPL/PPLu value are quite
similar for LMs with different embedding dimensions, but show
big differences with different sense numbers. This finding was
attributed to the definition of PPLu, which is a normalized PPL
using unigram probabilities. By definition, the models that shared
the same unigram probabilities showed the same ratio value

_1
of PPL/PPLu (HtT:1 Pum»(w[)) ", Because the settings under

different numbers of senses (e.g., 1 for all vs. 5 for all) used
different word vocabularies and thus different PPL/PPLu.

We conduct Welch'’s t-test to identify the statistically signif-
icant differences in the results of single-sense and multi-sense
LMs with the same network architecture. Specifically, the PPL
(or PPLu) scores of the test sentences were used as samples for
the t-test (i.e., sample no. = 1,641 for each model), and the null
hypothesis assumed that the scores of the two models exhibit no
meaningful difference. By rejecting the null hypothesis with p =
0.05, we confirm that the following observations are statistically
significant: (i) multi-sense LMs show superior performance to
single-sense LMs. (ii) multi-sense LMs with ground-truth sense
information (i.e., exact sense numbers and exact sense labels)
show better PPLu than the LMs with a fixed number of senses. (iii)
There is no significant difference between the multi-sense LMs
with ground-truth sense numbers and sense labels.
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Table 3

Performance of single-sense (SS) and multi-sense (MS) LMs on the PTB dataset.
The metrics PPL and PPLu correspond to perplexity and unigram-normalized
perplexity, respectively. The bold font indicates the best PPLu for all experiments.
Star(*) indicates significant difference (P < 0.05) between SS and MS models
with the same network.

Model SS/MS (Number of sense(s)) Metrics
PPL PPLu
LSTM-W200 SS (K = 1) (Kim et al,, 2016) 97.6 0.1527
MS (K = 9) 129.2 0.1051*
LSTM-W650 SS (K = 1) (Kim et al,, 2016) 85.4 0.1336
MS (K = 9) 124.8 0.1015*
LSTM-variants with augmented loss (Inan 73.2 0.1145
et al, 2016)
with continuous cache pointer 72.1 0.1128

(Grave et al., 2016)

Table 4
Performance of single-sense (SS) and multi-sense (MS) LMs on the Text8 dataset.
The best results among all experiments are shown in bold fonts. Star(*) indicates
significant difference (P < 0.05) between SS and MS models with the same
network.

Model SS/MS (Number of senses(s)) Metrics
PPL PPLu
LSTM-W300 SS(K=1) 159.4 0.1138
MS (K = 9) 199.9 0.0503*
LSTM-W650 SS(K=1) 174.8 0.0898
MS (K = 9) 137.8 0.0440*
GPT2-W600 SS(K=1) 98.9 0.0706
MS (K = 9) 153.4 0.0386*
MS (K = 9) with GPT2 at Stage 1 150.0 0.0360*

To compare our results with existing published results, we also
applied our methods to the PTB dataset and the Text8 dataset.
Some PPL values were imported from the published literature,
and PPLu values were evaluated from PPL and unigram probabil-
ities.

Table 3 shows the comparison on the PTB dataset. Our results
are obtained with LSTM LMs with 200 and 650 word embedding
dimensions. Although there exist several published results that
do not use LSTM, e.g.,, Kneser Ney smoothing, RNN (Mikolov
et al,, 2011), CNN (Wang, Lu, Li, Jiang, & Liu, 2015), and Sum-
Product Net (Cheng et al., 2014), they perform significantly worse
than LSTM. Therefore, we use the LSTM-based LMs as our single-
sense LM. In terms of the proposed PPLu, our multi-sense LMs
with 9 senses performed much better than the single-sense LMs.
Notably, the small-size multi-sense LM outperforms both the
large-size single-sense LMs. Additionally, the improvements from
single-sense to multi-sense LMs on the same network architec-
tures are significant, i.e., a 31.2% reduction from 0.1527 to 0.1051
and a 24.0% from 0.1336 to 0.1015 for the 200 and 650 embedding
dimensions, respectively.

Table 4 shows the comparison on the Text8 dataset, which is
larger than the PTB and SemCor datasets in terms of vocabulary
size and number of words. For our multi-sense LMs, we employ
the same architectures used on the PTB dataset to test their
scalability on medium-scale data. With this much larger Text8
dataset, we are also able to incorporate the GPT-2 LMs in Stage 3.

Again, we observed a similar trend in the results. In terms of
PPLu, even the small multi-sense LSTM LM with 300 embedding
dimension showed better performance than single-sense LMs
with larger embedding dimension including GPT-2 and the neural
cache model (Grave et al., 2016) (PPL is 99.9 and PPLu is 0.0713).
In addition, multi-sense GPT-2 models show significantly better
performance than all the others. For examples, the PPLu values
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Fig. 2. Performance of our LSTM-based multi-sense LMs for a different number of senses (clusters) on the (a) SemCor, (b) PTB, and (c) Text8 datasets. The results
obtained with K = 1 correspond to the single-sense LSTM-LMs. The results obtained with K > 1 correspond to our multi-sense LMs based on LSTM-W400 or

LSTM-W650.

of multi-sense LMs become much smaller than those of single-
sense LMs by 55.8% (from 0.1138 to 0.0503) for LSTM-W300,
by 51.0% (from 0.0898 to 0.0440) for LSTM-W650, and by 45.3%
(from 0.0706 to 0.0386) for GPT2-W600.

Also, we found that the LM model in Stage 3 is more important
than that in Stage 1. While the other LMs in Stage 1 are based on
LSTM, that of the bottom row in Table 4 is implemented with
GPT-2. Therefore, the difference between PPLu values at the first
and second rows from the bottom come solely from the different
LM models in Stage 1. By changing LM model from LSTM to GPT-
2 in Stage 1 with the same GPT-2 model in Stage 3, we obtain
only 6.7% reduction of PPLu (from 0.0386 to 0.0360). On the other
hand, with the same LSTM-based LM in Stage 1, the change of LM
from LSTM to GPT-2 in Stage 3 resulted in 12.3% (from 0.0440 to
0.0386) reduction of PPLu values.

5.1.2. Effects of the number of senses on LM performance

The number of clusters (i.e., the number of senses per word),
K, is an important hyperparameter for the k-means clustering in
Stage 2, which affects multi-sense LM performance in Stage 3.
Here, we investigate how the number of clusters, K, affects per-
formance. We show the results from the same LSTM models for
both Stages 1 and 3. For the case with K = 1 (which is identical
to single-sense LM), the results of LSTM models in Stage 1 are
reported. For each case with K>1, we accordingly form new vo-
cabularies and train our LSTM-based multi-sense LMs in Stage 3.
We perform this experiment for each dataset.

Fig. 2 shows the effect of varying K, and we can make two
observations, i.e., (i) data characteristics affect the proper number
of clusters, and (ii) PPL and PPLu show different trends. Regarding
(i), the number of clusters for the best PPLu depends upon dataset
(i.e., K =5 for SemCor, K = 9 for PTB, and K > 17 for Text8). The
Text8 dataset is much larger and has broader topics than the PTB
and SemCor datasets, which may lead to a larger optimal number
of clusters. Therefore, it is necessary to find the proper number
of clusters for each corpus.

Regarding (ii), PPL values increase monotonically as the num-
ber of clusters increases (i.e., the vocabulary size increases). This
result again supports that PPL is not suitable for comparing LMs
with different vocabulary sizes. On the other hand, as the number
of clusters increase, PPLu values decrease initially and eventually
converge to fixed values or even increase. For small SemCor
dataset the large numbers of senses may result in overfitting,
while the large number of clusters may not harm much for
the largest Text8 dataset. Provided enough training data were
available, the extra number of clusters may just result in splitting
a sense into several clusters, which does not change PPLu values
as demonstrated in Section 3.4.

5.1.3. Results with the estimated number of senses for each word
In Table 5, we show both the multi-sense LM performance
in Stage 3 and the clustering performance in Stage 2. We also
employ the gap statistics methods (Tibshirani et al., 2001) to esti-
mate the number of clusters for each word. Specifically, given the
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Table 5

Experimental results on the SemCor, PTB, and Text8 datasets with the esti-
mated optimal number of senses for each word. Bold fonts indicate the best
performance on each dataset. For the SemCor dataset with annotated sense
labels, clustering results in Stage 2 are evaluated with the Adjusted Rand Index
(ARI) and Normalized Mutual Information (NMI). Star(*) indicates significant
(P < 0.05) difference between single-sense and multi-sense models with the
same network.

Datasets Number of senses Metrics
PPL PPLu ARI NMI
SemCor Fixed K = 1 102.6 0.2195
Fixed K =5 134.1 0.2005* 7.1 20.7
Gap statistics 135.1 0.1970* 71 24.2
Exact Numbers 130.1 0.1824* 10.2 345
PTB Fixed K = 1 85.4 0.1336
Fixed K =9 124.8 0.1015* - -
Gap statistics 124.5 0.1029*
Text8 Fixed K = 1 98.9 0.0706
Fixed K =9 174.8 0.0440* - -
Gap statistics 175.3 0.0475*

learned context embedding vectors of each word occurrence in
Stage 1, we perform k-means clustering by varying the number of
clusters, K, in a range of 1<K<K,.x. Then, we select the best value
of K by evaluating the KL divergence of each cluster from uni-
form random distribution. It assumes that uniformly distributed
clusters are not good.

By estimating the number of senses for each word with the
gap statistics method, the PPLu values of multi-sense LMs became
smaller than or similar to those of the exact-numbers. For the PTB
dataset, PPLu value with the gap statistics method is comparable
to that of fixed sense number (K = 9). However, for the largest
Text8 dataset, the gap statistics method results in slightly poorer
performance.

Fig. 3 shows the distributions of the estimated number of
clusters in three datasets. We set the maximum number of senses
(Kmax) for each dataset to 10, which is the same as the maximum
number of senses for SemCor annotation. The average numbers
of clusters for the SemCor, PTB, and Text8, are 5.9, 7.9, and
9.2, respectively. Results of the gap statistics method result in
a similar number of clusters as those of the best PPLu. On the
other hand the numbers of words with larger number of clusters
(K > 7) are still increasing, which may give us a hint for the
needs of even larger number of clusters. Actually, with the largest
word size in the Text8 dataset, there may be words with quite
large number of senses. Note that the use of the same number
of senses requires a hyperparameter search to find an optimal
K. In contrast, the use of an estimation method does not require
such a time-consuming search and is a more natural approach to
processing words with a different number of senses.

Additionally, we include a quantitative evaluation of the clus-
tering results of Stage 2 with two additional evaluation metrics,
i.e.,, the ARI (Hubert & Arabie, 1985) and NMI (Kvalseth, 1987).
Both ARI and NMI have an expected value of “0” for independent
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clusters and “1” for identical clusters. To evaluate the clustering
performance, the ground-truth clustering labels are needed, and
results on the SemCor dataset only are reported here. Following
the common practices, we multiply the ARI and NMI values by
100. As shown in Table 5, both the ARI and NMI values of the
models using exact and estimated number of clusters become
higher than those of models using a fixed number of clusters.
Moreover, the NMI value of the model using the estimated num-
ber of clusters has higher than those of the fixed number of
clusters (K = 5). These results are in agreement with the tendency
of PPLu.

Although the ARI and NMI values with exact sense numbers
are expected to be the closest to the ground-truth clusters, they
are much smaller than those of exact labels, i.e., ARI=NMI=100,
due to the small number of samples for each word. Fig. 4 shows
a scatter plot of words in (the number of samples per word) and
(the ARI value) space. One dot represents a word, and the color
of the dot represents the number of senses in the word. We ob-
served that the variance in the ARI value increases as the number
of samples per word decreases. This phenomenon is especially
critical for the ARI measure, which is based on selecting 2 samples
in the same cluster. Since 50% of the words in the SemCor dataset
have less than 10 samples per word, the ARI values are much
smaller than expected. Even with the exact number of clusters,
the clustering becomes noisy with a small number of samples.
If a sufficient number of samples is provided for each word, the
overall average value of ARI can be expected to increase.
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5.1.4. Nearest-neighbor words with multiple senses

In Table 6, we further present our qualitative results on the
SemCor dataset in terms of the nearest-neighbor words. For each
query word with a single-sense LM, we found top-3 nearest
words based on Euclidean distance in the word embedding space.
However, due to the multi-sense property, the nearest-neighbor
words do not show any consistency. Also, for each query word
with a multi-sense LM, we found top-2 senses and their top-
3 nearest neighbor words. Both the exact numbers of clusters
(denoted as “Exact Sense Numbers”) and the ground-truth sense
labels (denoted as “Exact Sense Labels”) are compared. For the
query “like”, its two sense embedding vectors show two distinct
neighbors, one as a verb and the other as a preposition. The near-
est neighbors of the query “most” also show distinct usages as de-
terminer and adverb. However, the word “may” is used as an aux-
iliary verb in almost all training samples, and its other usages (as
the fifth month of the year) contribute little to the cluster learn-
ing. Therefore, all sense clusters may result in similar embedding
vectors and have the same neighbors. All these phenomena are
related to the fact that the multi-sense clustering works well.

Similarly Table 7 qualitatively compares the nearest-neighbor
words of single-sense and multi-sense representations on the
Text8 dataset. Again, the single-sense and multi-sense repre-
sentations lead to similar but slightly different tendency. For
example, the query “may” in the multi-sense LM now has two
distinct neighbor words, one for the auxiliary verb and the other
for a month of the year. The larger data size may contribute to
this better clustering results.
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Top-3 nearest-neighbor words of the single-sense and the multi-sense representations from LSTM-W400 in the

SemCor dataset.

Query like most then may
including some finally might
Single-sense met many otherwise shall
provides five already should
wanted by many  relatively sometimes  night should  would
Exact sense numbers  want about five perfectly merely moment  must might
used including  seven  extremely  once here would will
need including many  too recently years shall might
Exact sense labels want by some quite sometimes  night must should
wanted  against five become suddenly moment  could simply

Table 7

Top-4 nearest-neighbor words of the single-sense and the multi-sense representations from

Text8 dataset.

LSTM-W650 in the

Query may banks fox rock
might generators lancaster jam
Single-sense can vicinity richardson bluegrass
to bubbles turner funk
could capitalists robertson ceramic
june shall shores corporations nbc panda wind pop
. august might corners businesses hbo dodo springs punk
Multi-sense ] . .
april cannot tributaries firms cbs kangaroo cave blues
december otherwise slopes agencies aol dish sand techno

5.2. Performance on the NLP benchmarks

We compare performance on several downstream NLP tasks
based on the GLUE and SuperGLUE benchmarks.

5.2.1. Setup

To ensure a fair comparison of the representations, all
baselines were trained from scratch on the Text8 dataset
(Section 5.2.2) with the dimensionality of the embeddings set to
300 (default). The same model is used for both the single-sense
and multi-sense LMs in Stages 1 and 3.

For the LSTM-based LMs, the pretrained embedding vectors
were used as inputs to the BiLSTM encoder, which was trained for
each downstream task. In the single-sentence classification task,
SST-2, similar to Wang et al. (2018), we used a two-layer BiLSTM
with 1,200-dimension embedding vectors each for forward and
backward directions with max pooling as the sentence encoder.
The output of this sentence encoder is fed to the task classifier.
In the sentence-pair classification tasks, i.e., MRPC, QQP, MNLI,
QNLI, RTE, BoolQ, WiC, and MultiRC, following Mou et al. (2015),
we independently encoded each of the sentences h; and h, and
passed the feature vectors [hq; hy; hy - hy; hy — hy] to a task
classifier.

For the Transformer-based models, the parameters of the pre-
trained models were fine-tuned for each downstream task. Due
to the memory capacity of our GPU system we used 12-layer
networks with 12 attention heads and 128 time steps. Following
the original papers, we used Adam adaptive learning rates with
0.0001 as a maximum learning rate. The final hidden state vector
corresponding to the special classification token for “Classifica-
tion” was used as a sentence representation for classification
tasks.

Our baseline models are described below.

e CBoW and SG+CRP (Li & Jurafsky, 2015): These are n-gram
methods and included only for reference purpose. The
CBoW is a single-sense model, while the SG+CRP utilizes
skip-gram (SG) embedding learning and unsupervised clus-
tering of multiple senses by Chinese Restaurant Process
(CRP). Each sense token is assigned by using a greedy search
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algorithm. The codes for SG+CRP have been provided at htt

ps://github.com/jiweil/mutli-sense-embedding.

LSTM and BiLSTM: Follows to Kim et al. (2016), the LSTM is

a two-layer LSTM LM. Word embeddings of 300 dimensions

are used as the input to the sentence encoder. The BiLSTM

is a two-layer BiLSTM LM as Melamud et al. (2016). Output
embeddings of 300 dimensions are used as the pretrained
input to the sentence encoder.

GPT2 and BERT: We follow the implementation of GPT-

2 described in Radford et al. (2019) and BERT in Devlin

et al. (2019) with a word-sense embedding dimension of

600. To match the vocabulary size of the other baseline

models, we do not use subword embedding in GPT-2 and

BERT and use a word-sense embedding only. The codes for

GPT-2 and BERT have been provided at https://github.com/

huggingface/transformers.

e XLNet: XLNet is a variant of Transformer-based LMs with
bidirectional contexts. We follow the training procedures
used in Yang et al. (2019) with a word/sense embedding
dimension of 600.

5.2.2. Results on the GLUE benchmark

Table 8 shows performance on the GLUE benchmark. For the
same network architecture and parameters, the performance of
multi-sense LMs is better than or similar to that of single-sense
LMs for all tasks. Especially, multi-sense GPT-2 and BERT achieved
significantly higher scores on the textual entailment tasks such
as MNLI and QNLI. However, the multi-sense token method does
not help much in improving performance on the RTE task. Also,
GPT-2 and BERT result in similar to each other, but better than
LSTM-based models on several tasks and on average. On the other
hand the multi-sense LSTM LM achieved the highest accuracy
(77.7%) on the MRPC task, which evaluates the semantic similarity
between two sentences. These results confirm that our sense-
level tokens can help improving the performance of various LM
models including LSTMs and Transformers. Similarly, another
unsupervised multi-sense model, SG+CRP, showed higher scores
than the single-sense CBoW method. However, these n-gram
models are inferior to the LSTM and Transformer-based LMs.
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Table 8

Performance on the GLUE benchmark. All models are pretrained on the Text8
dataset. For CoLA and STS-B, we report the Matthews correlation coefficients
and the averaged values of the correlation coefficients, respectively. For all
other tasks an accuracy is reported for each task and also their average value.
Performance of single-sense CBoW reported in Wang et al. (2019) and multi-
sense SG with CRP in Li and Jurafsky (2015) is reported for reference only.
Bold fonts indicate the best performance for each task. Except the average
accuracy, a star(*) indicates statistically significant difference (P < 0.05) between
single-sense and multi-sense models with the same network.

Model SS/MS Avg. SST-2 MRPC QQP MNLI QNLI RTE | ColA STS-B
CBoW  SS 69.1 800 734 79.1 560 721 54.1| 0.0 60.0
SG+CRP MS 7277 783 743 846 671 732 585| 86 67.9
LSTM SS 738 80.2 750 853 679 747 599| 159 69.8
MS 74.6 81.2* 77.7° 86.2* 67.5* 75.0* 59.9| 20.8* 69.4*
BiLSTM SS 735 794 757 849 675 751 581 180 67.7
MS 743 817 76.0 86.1* 68.1* 74.4* 59.6 18.1* 71.9*
GPT2 SS 732 859 718 827 647 753 588| 184 413
MS 76.2 86.7* 74.0* 86.7* 72.8* 77.9* 58.8| 17.3* 69.6*
BERT SS 727 85.0 72.1 827 638 747 58.1| 166 309
MS 764 85.1 73.3* 86.4* 73.3* 804" 59.9| 17.5* 69.3*
Table 9

Performance of single-sense (SS) and multi-sense (MS) models on three tasks in
the SuperGLUE benchmark. For BoolQ and WiC, we report accuracies, while we
report F1 on all answer-options for MultiRC. In the Avg. column, we report the
average value of all tasks. Performance of CBoW was reported in Wang et al.
(2019). Bold fonts indicate the best performance for each task set. A star(*)
indicates significant difference (P < 0.05) between SS and MS models with the
same network.

Model SS/MS Avg. BoolQ WiC MultiRC
CBoW SS 46.0 62.4 55.3 20.3
SG+CRP MS 58.7 64.7 59.7 51.6
LSTM SS 61.7 69.1 61.4 54.6
MS 62.3 68.8* 63.0* 55.2*
BiLSTM SS 62.0 69.3 61.8 55.0
MS 62.6 694" 63.0* 55.5*
GPT2 SS 62.2 68.9 60.2 57.4
MS 63.1 69.4* 60.2 59.7*
BERT SS 62.1 67.2 60.2 58.9
MS 62.6 67.8* 60.2 59.9*
XLNet SS 63.7 69.0 62.5 59.5
MS 65.0 69.0 66.0" 59.9*

5.2.3. Results on the SuperGLUE benchmark

Table 9 compares the performance of the single-sense and
multi-sense LMs on the three tasks (i.e., BoolQ, WiC and MultiRC)
in the SuperGLUE benchmark. The performance of the SuperGLUE
benchmark also shows similar tendency to that of the GLUE
benchmark. For all LMs, the performance of multi-sense tokens
shows better than or similar to that of single-sense tokens. The
XLNet model results in the highest scores for average as well
as WiC and MultiRC tasks with both single-sense and multi-
sense tokens. For both single-sense and multi-sense tokens the
BiLSTM shows the best score on the BoolQ. We observed that
the SG-based multi-sense model showed poorer performance
than the other LMs due to the difficulties of considering longer
contexts. These results confirm that multi-sense tokens can help
to improve the performance of various LMs significantly.

6. Conclusions

In this paper, we proposed a sense-aware framework that con-
sists of three essential stages, i.e., context representation learning
stage, sense labeling stage, and multi-sense LM learning stage, for
introducing multi-sense word tokens. The proposed framework
is the first to integrate the modeling of multi-sense words into
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various deep sequence neural LMs, which capture lengthy context
information. By incorporating the multi-sense labeling process
with unsupervised clustering methods, our multi-sense LMs suc-
cessfully learn sense-specific representations. The unsupervised
clustering stage is separated from the single-sense representation
learning stage and also the fine-tuning stage with the learned
multi-sense labels. Therefore, any state-of-the-art LMs can be
easily adopted. Also, the number of senses for each word is esti-
mated for near-optimal performance. This multi-sense clustering
algorithm is implemented with purely unsupervised learning and
applicable to almost all datasets. Because of the explicit assign-
ment of different sense tokens to a multi-sense word, the LM task
itself becomes much simpler for the same performance, and the
resulting model is very light in terms of memory and computation
requirements.

Furthermore, we proposed a new evaluation metric, PPLu, and
provided both theoretical and experimental analyses. The new
metric allows us to assess the performance difference between
single-sense and multi-sense LMs with different vocabulary sizes.

By using three language modeling datasets, we demonstrated
that the proposed multi-sense LMs significantly outperformed
single-sense LMs with the same network architectures and pa-
rameters for all LSTM and Transformer-based models. Both uni-
directional and bidirectional network architectures were imple-
mented. The qualitative results of nearest-neighbor words con-
firmed the benefit of employing multi-sense representations in
accurately capturing word meanings. Also, multi-sense LMs at-
tained significantly better performance than single-sense LMs
with the same architecture (LSTM, BiLSTM, GPT2, BERT, and XL-
Net) and parameters for many downstream NLP tasks on the
GLUE and SuperGLUE benchmarks.
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