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a b s t r a c t

Existing language models (LMs) represent each word with only a single representation, which is
unsuitable for processing words with multiple meanings. This issue has often been compounded
by the lack of availability of large-scale data annotated with word meanings. In this paper, we
propose a sense-aware framework that can process multi-sense word information without relying
on annotated data. In contrast to the existing multi-sense representation models, which handle
information in a restricted context, our framework provides context representations encoded without
ignoring word order information or long-term dependency. The proposed framework consists of a
context representation stage to encode the variable-size context, a sense-labeling stage that involves
unsupervised clustering to infer a probable sense for a word in each context, and a multi-sense LM
(MSLM) learning stage to learn the multi-sense representations. Particularly for the evaluation of
MSLMs with different vocabulary sizes, we propose a new metric, i.e., unigram-normalized perplexity
(PPLu), which is also understood as the negated mutual information between a word and its context
information. Additionally, there is a theoretical verification of PPLu on the change of vocabulary
size. Also, we adopt a method of estimating the number of senses, which does not require further
hyperparameter search for an LM performance. For the LMs in our framework, both unidirectional and
bidirectional architectures based on long short-term memory (LSTM) and Transformers are adopted.
We conduct comprehensive experiments on three language modeling datasets to perform quantitative
and qualitative comparisons of various LMs. Our MSLM outperforms single-sense LMs (SSLMs) with the
same network architecture and parameters. It also shows better performance on several downstream
natural language processing tasks in the General Language Understanding Evaluation (GLUE) and
SuperGLUE benchmarks.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Language models (LMs) have been core elements in numerous
pplications of natural language processing (NLP), e.g., language
odeling (Bengio, Ducharme, Vincent, & Jauvin, 2003; Mikolov,
ombrink, Burget, Černockỳ, & Khudanpur, 2011), machine trans-

lation (Cho et al., 2014), and speech recognition (Amodei et al.,
2016). LMs determine the probability of word sequences and are
designed to generate high-probability sequences that are both
semantically and synthetically meaningful. To achieve good per-
formance, LMs must accurately capture the relationships among
words and phrases in word sequences.

∗ Corresponding author.
E-mail addresses: rohleejh@kaist.ac.kr (J. Roh), zxznm@kaist.ac.kr (S. Park),

okyeong1015@gmail.com (B.-K. Kim), shoh@kaist.ac.kr (S.-H. Oh),
ylee@kaist.ac.kr (S.-Y. Lee).
ttps://doi.org/10.1016/j.neunet.2021.05.023
893-6080/© 2021 Elsevier Ltd. All rights reserved.
Compared with classical count-based n-gram LMs (Kneser &
Ney, 1995), recent neural-network-based LMs (NLMs) (Bengio
et al., 2003; Jozefowicz, Vinyals, Schuster, Shazeer, & Wu, 2016;
Kim, Jernite, Sontag, & Rush, 2016) have performed better to
encode the relationships among words based on vector represen-
tations, also known as word embeddings. In particular, recurrent
neural networks (RNNs) (Elman, 1990), which can effectively pro-
cess long-term time dependency, have been spotlighted. Despite
their superior performance in several applications, most NLMs
simply learn a single embedding vector per word while neglecting
words that have different meanings depending on the context.
For example, multiple meanings of ‘‘apple’’ (i.e., the fruit or the
company) or ‘‘bank’’ (i.e., a financial institution or sloping land)
are contained in one embedding and cannot be distinguished.

To address the ambiguity of word embeddings, previous stud-
ies have distinguished the meanings of multi-sense words based
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n their surrounding context. In many previous studies (Bar-
unov, Kondrashkin, Osokin, & Vetrov, 2016; Li & Jurafsky, 2015;
eelakantan, Shankar, Passos, & McCallum, 2014; Qiu, Tu, & Yu,
016), a word with multiple senses has been explicitly embedded
nto several distinct vectors (i.e., explicit sense vectors) for dis-
ributed representation models, such as continuous bag-of-words
CBoW) (Mikolov, Chen, Corrado, & Dean, 2013) and skip-gram
SG) (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) models.
here are some studies (Aharoni & Goldberg, 2020; Ansell, Bravo-
arquez, & Pfahringer, 2021; Ma, Jin, Liu, Chen, & Yu, 2020)

hat model explicit sense vectors using neural LMs. However,
hese previously works suffer from several drawbacks. The com-
osition of the context from distributed representation models
i.e., word2vec models) readily captures word relationships but
as limited the number of neighboring words that comprise the
ontext (Bartunov et al., 2016; Li & Jurafsky, 2015; Neelakantan
t al., 2014; Qiu et al., 2016). In addition, due to the inclusion
f future words and neglecting of the order of words in the
ontext, it is difficult to directly apply the learned context rep-
esentations to language modeling tasks. Although predefined
opics help simplify the learning algorithm, it may produce some
eaningless (unnatural) representations (Aharoni & Goldberg,
020; Neelakantan et al., 2014). Also, the mixing of word- and
ense-level tokens enables the optimization of the entire learning
rocess with a single model, but word-level tokens lead to ambi-
uity in the representation learning process (Ansell et al., 2021;
i & Jurafsky, 2015; Ma et al., 2020; Neelakantan et al., 2014;
hao & Mao, 2017). Therefore, the performance improvement of
he multi-sense embedding was limited to simpler LMs and not
minent for advanced LM models such as LSTM (Li & Jurafsky,
015).
Recently, contextualized word embeddings (CWEs) have been

ntroduced to implicitly learn word representations based on the
ontext (Devlin, Chang, Lee, & Toutanova, 2019; Peters et al.,
018; Radford, Narasimhan, Salimans, & Sutskever, 2018). These
ethods are built on the basis of advanced neural networks, such
s LSTM networks (Hochreiter & Schmidhuber, 1997) and Trans-
ormers (Vaswani et al., 2017), and have achieved remarkable
erformance on several NLP tasks. However, they still use one
mbedding per word as the input, which leaves a very difficult
ask of distinguishing multiple senses to the neural network
odels.
In this paper, by combining the explicit unsupervised clus-

ering of multi-sense words with advanced NLMs, we propose a
lexible framework to achieve improved LM performance. Here,
e focus on two specific types of advanced NLMs, i.e., LSTM and
ransformer based networks, which have been actively explored
n the NLP field recently. Specifically, our framework consists
f 3 stages, i.e., (a) a context representation learning stage to
ncode the variable-size context into a dense representation, (b) a
ense-labeling stage by unsupervised clustering to infer a probable
ense based on the learnt representation, and (c) a multi-sense
M (MSLM) learning stage to learn multi-sense representations
ith the inferred senses. Words with different inferred senses
re treated as different tokens and fed to either unidirectional
r bidirectional LMs. Both LSTM and Transformer networks are
mplemented in the LMs.

We further estimate the number of clusters (senses) to im-
rove the robustness of the learning algorithm. To compare LM
erformance given different vocabulary sizes, we present a new
valuation metric, i.e., unigram-normalized perplexity (PPLu). We
emonstrate quantitative improvements over the single-sense
M (SSLM) and recent CWE methods on the SemCor all-words
SemCor), Penn Treebank (PTB), and Text8 datasets and several
ownstream NLP tasks. Qualitative evaluations of the nearest-
eighbor words show the superiority of our MSLMs. Our contri-
utions are summarized as follows:
398
• We propose a novel framework for the effective integra-
tion of purely unsupervised word sense clustering with
sequence-based unidirectional or bidirectional NLMs.

• We propose a new LM performance metric that is not af-
fected by vocabulary size.

• We quantitatively and qualitatively demonstrate the supe-
riority of our multi-sense method over SSLMs on several
natural language understanding (NLU) benchmark tasks.

This paper is organized as follows. After reviewing the re-
lated works in Section 2, we introduce the proposed three-stage
learning framework in Section 3. The datasets and experimental
settings used are described in Section 4. Experimental results
on several datasets and tasks are presented and analyzed in
Section 5. Finally, our concluding remarks are summarized in
Section 6.

2. Related works

Since our study is based on LMs and multi-sense word mod-
eling, some relevant previous studies are reviewed here.

2.1. Statistical language models

The aim of statistical LMs is to compute the probability dis-
tribution of sequences in various language units (e.g., charac-
ters or words). These LMs can be classified into two categories,
i.e., count-based LMs and NLMs. Traditional count-based methods
generally estimate n-gram probability based on Markov assump-
tions using counting and smoothing techniques (Kneser & Ney,
1995). These LMs rely on patterns of symbolic token sequences,
in which the similarities among words are not considered. NLMs
solve this problem by using the distributed representation of
language units (e.g., word-embedding vectors).

NLMs have two main streams, i.e., finite-size n-gram NLMs
nd sequence-based LMs. The n-gram NLMs were proposed to
olve the above problems of symbolic token counts (Bengio et al.,
003; Cheng, Kok, Pham, Chieu, & Chai, 2014; Pham, Kruszewski,
Boleda, 2016; Zhang, Jiang, Xu, Hou, & Dai, 2015). Additionally,

equence-based LMs have increased the context size to almost
nfinity (Jozefowicz et al., 2016; Mikolov et al., 2011; Vaswani
t al., 2017). Unlike traditional methods, network parameters,
ncluding word embeddings, are learned jointly in the learning
rocess.
The first approach for an n-gram NLM was to develop a neural

robabilistic LM (Bengio et al., 2003) built on a simple feed-
orward neural network (FNN). Based on (n − 1) previous words
n n-gram model produced a conditional probability distribution
f the next word. Then, a convolutional neural network (CNN)-
ased LM (Pham et al., 2016) was proposed as an advanced model.
owever, they take a fixed number of previous words as input,
nd therefore n-gram NLMs face difficulty in processing distant
ontext information.
Conversely, sequence-based LMs were built with RNNs and/or

ransformer models to transfer information for a long time. For
NNs each hidden state is represented by a composition of all
revious words, and the final hidden state may represent the
hole sentence. Recently, advanced forms of RNNs, such as LSTM,
ave been used to reduce the vanishing gradient problem. Some
tudies have proposed the application of several learning tech-
iques (e.g., variational dropout, weight tying, and augmented
oss function (Inan, Khosravi, & Socher, 2016)) to LSTM and added
aches that enhance information storage capacity (Grave, Joulin,
Usunier, 2016).
Unlike previous works that utilize only word-level tokens,

ome studies have incorporated subword information to repre-
ent words (Botha & Blunsom, 2014; Kim et al., 2016). For exam-
le, a character-aware NLM (Kim et al., 2016) builds the structural
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haracteristics of the words with CNNs, which take character-
evel tokens as the input and generate outputs to LSTM-based
Ms.
An attention-based sequential modeling architecture, Trans-

ormer (Vaswani et al., 2017), has gained attention due to its par-
llel computation and interpretability. As representative
ransformer-based models, bidirectional encoder representations
rom transformers (BERT) (Devlin et al., 2019) and generative
retraining (GPT) (Radford et al., 2018, 2019) models pretrained
ulti-layer Transformers on a large corpus and demonstrated
uperior performance on many language processing tasks for
uch longer sequences. A variety of BERT and GPT variant mod-
ls, like XLNet (Yang et al., 2019), have emerged. Our work
ocuses on LSTM-based and Transformer-based LMs to address
ong-term context information. However, the embedding ambi-
uity of multi-sense words still remains. To alleviate this limita-
ion, we combine the multi-sense word embedding method with
equence-based NLMs.

.2. Modeling multi-sense words

Several approaches have been proposed for modeling multi-
ense words (Bartunov et al., 2016; Guo, Che, Wang, & Liu, 2014;
i & Jurafsky, 2015; Neelakantan et al., 2014; Qiu et al., 2016;
eisinger & Mooney, 2010; Song, Wang, Mi, & Gildea, 2016). In
ense representation, each sense of a word needs to be rep-
esented differently depending on its context. Related studies
an be classified into three categories, i.e., supervised learning
ethods with a sense-annotated corpus, knowledge-based dis-
mbiguation methods, and unsupervised learning methods.
Studies using supervised learning methods have focused on

earning the word sense disambiguation (WSD) from
xamples. These works (Melamud, Goldberger, & Dagan, 2016;
uan, Richardson, Doherty, Evans, & Altendorf, 2016) map
ords to their related senses using a sense-annotated corpus.
nowledge-based research has begun to achieve good progress
n the development of large lexical resources such as Word-
et (Miller, Beckwith, Fellbaum, Gross, & Miller, 1990) and Ba-
elNet (Navigli & Ponzetto, 2012). For example, translation-based
ethods (Guo et al., 2014), which rely on a bilingual parallel
atabase, have shown good performance in word sense induction.
owever, difficulties have arisen in applying knowledge-based
ethods to languages with insufficient lexical resources. Both
upervised learning methods and translation-based methods have
ncountered difficulties in obtaining the training data. Due to
hese difficulties, our work focuses on an unsupervised learn-
ng method that requires only a monolingual database without
ulti-sense annotation.
Unsupervised learning methods aim to assign proper multiple

enses for a multi-sense word from unannotated text data. These
orks infer multiple senses of words, including the types of
ords (e.g., nouns and verbs) used in the WSD task. Even if the
eaning of a word has changed over time, these methods can
ope with the change. They usually consist of two parts. The first
art involves defining a context for a word and computing its
ontext representation. The second part involves grouping con-
ext representations according to their similarity and relabeling a
ord token with one of several corresponding senses.
While the studies reported in Ansell et al. (2021), Ma et al.

2020), Neelakantan et al. (2014), Reisinger and Mooney (2010)
onsidered a fixed number of sense representations for all words,
here were a few studies that used different numbers of sense
epresentations for each word. The nonparametric multi-sense
kip-gram (MSSG) model (Neelakantan et al., 2014) and skip-
ram (SG) with the Chinese restaurant process (CRP) (Li & Ju-
afsky, 2015) determine the number of senses for each word.
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Zhao and Mao (2017), Jain, Bodapati, Nallapati, and Anandkumar
(2019), and Panigrahi et al. (2019) assigned one of the predefined
topics to each word to distinguish the meanings of the multi-
sense words, where the topic is derived from topic modeling
methods such as latent dirichlet allocation (LDA) (Blei, Ng, &
Jordan, 2003). Panigrahi et al. (2019) utilized a generative model
and topic distribution to learn an interpretable word sense rep-
resentation. Aharoni and Goldberg (2020) proved the existence
of clusters in pretrained LMs that capture domain-specific in-
formation contained in a sentence. These results justified the
replacement of the sense with a topic. PolyLM (Ansell et al., 2021)
added the disambiguation encoder to the vanilla Transformer
encoder. The disambiguation encoder was designed to represent
the subword as the weighted sum of the predefined senses and
to allocate the correct sense to each subword.

Our proposed framework differs from the abovementioned
works. First, previous works (Bartunov et al., 2016; Neelakantan
et al., 2014; Qiu et al., 2016; Song et al., 2016) computed context
representations by averaging word embeddings within a local
context of a fixed window size while ignoring any words outside
this window. In our framework, the applied sequence-based LMs
utilize the full context length with word order information. Sec-
ond, one previous study (Guo et al., 2014) considered contexts
only from previous words, while we integrate multi-sense words
into LMs with both unidirectional and bidirectional LSTMs and
Transformers. Third, our framework does not require any topic
modeling and predefined topics used in previous works (Aharoni
& Goldberg, 2020; Jain et al., 2019; Panigrahi et al., 2019).

Another group of methods based on CWEs (Dai et al., 2019;
Devlin et al., 2019; Peters et al., 2018; Radford et al., 2018; Yang
et al., 2019) focuses on representing the meaning of a word by
using its context and does not require an explicit sense induction
step. The methods in these studies relied on the implicit modeling
of the senses of words using LMs and outperformed previous
methods for recent downstream NLP tasks.

In the embeddings from LMs (ELMo) (Peters et al., 2018), CWEs
are obtained from a bidirectional LM based on character-level
LSTMs. A linear combination of representations from each hidden
layer is used as the context representations. Unidirectional or
bidirectional Transformer-based models such as GPT and BERT
represent CWEs by encoding context information through an at-
tention analysis of neighboring words. There have been a number
of other methods based on CWE for the word sense disambigua-
tion task (Huang, Sun, Qiu, & Huang, 2019; Vial, Lecouteux, &
Schwab, 2019). However, these works do not produce explicit
sense representations.

The aforementioned works share the same philosophy with
our work. Both works aim to encode word senses from context
information in LM. However, we explicitly separate the multi-
sense disambiguation stage from the LM stage. By making each
stage separate, we are able to easily adopt any state-of-the-art
LMs such as GPT, BERT, and XLNet. In addition, for downstream
NLP tasks, it is possible to import only the pretrained sense
embeddings into task-specific networks, whereas all hidden-layer
features of the pretrained LM are readily available without many
additional computational costs.

3. Method

Fig. 1 depicts our proposed framework, which consists of
three main stages, i.e., context representation via single-sense LM
learning in Stage 1, sense labeling via unsupervised clustering in
Stage 2, and multi-sense LM learning in Stage 3. Stage 1 encodes
the context information of a word into a single representation.
Stage 2 determines the sense of a word among its possible senses
given its context representations. The context representations
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Fig. 1. The proposed framework consists of three stages. (a) In Stage 1, a single-sense LM learns context representation vectors (hcontext (ws)) from word tokens ws

(i.e., a single sense per word). (b) In Stage 2, the learned context vectors of each multi-sense word in a training corpus are split up by an unsupervised clustering
algorithm to create several new word-sense tokens wm , e.g., ‘‘apple1 ’’ and ‘‘apple2 ’’. For simplicity, the number of clusters, K, is shown to be 2. (c) In Stage 3, a
ulti-sense LM learns context representation vectors from the word-and-sense tokens, wm . Although these clustering in (b) and multi-sense LM learning in (c) may
e repeated for iterative refinement, results from only one learning cycle are reported in this paper.
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rom Stage 1 are grouped depending on their similarity in Stage
, where one word is assumed to have an arbitrary K number
f senses (i.e., word meanings). Stage 3 encodes the clustered
nferred word senses via another LM learning. Various neural LMs
an be utilized in Stages 1 and 3.
Stage 1 uses a single representation per word that is associated

ith word-level tokens ws, while Stage 3 uses a multi-sense
epresentation that is associated with sense-level tokens wm,
.g., apple1 or apple2 in Fig. 1(c) for the word ‘‘apple’’. In Stages
and 3, either a unidirectional or bidirectional LM can be used
ased on either LSTMs or Transformers. In the following section,
e denote vocabulary in uppercase italics V s and Vm for the
ingle-sense and multi-sense representations, respectively. Each
ord sense is assumed to have one index within the vocabulary.
he whole procedure is summarized in Algorithm 1.

Algorithm 1: Multi-Sense LM Algorithm
1: # Stage 1
2: Optimize a single-sense LM with a vocabulary (vs

1, ..., v
s
|V s|)

3: # Stage 2
4: for vs in vocabulary V s do
5: # Compute context vectors of v for all Rv occurrences in

the corpus
6: Hv = {hcontext (vs(1)), . . . ,hcontext (vs(Rv))}
7: Compute µv

1, ...,µ
v
Kv

using k-means clustering on Hv

8: Assign a cluster as zv(r) = argmink=1,...,Kv
∥hcontext (vs(r))

− µv
k∥

9: end for
0: # Stage 3
1: Initialize multi-sense vocabulary (vm

1 , ..., vm
|Vm|

) by expanding
all zv(r) into one-dimensional array

2: Replace all single-sense tokens ws
1:T with multi-sense tokens

wm
1:T in the corpus

3: Optimize a multi-sense LM with a new vocabulary
(vm

1 , ..., vm
|Vm|

)

m

400
3.1. Stage 1: Context representation via single-sense LM learning

Fig. 1(a) depicts the unidirectional LM for learning context
vector representations. A context vector is a representation that
encodes the meaning of a word. For a word wt at time t in a sen-
ence w1:T = {w1, . . . , wT }, its context vector often summarizes
ll other words, which include past words {w1, . . . , wt−1} and
uture words {wt+1, . . . , wT }. Vocabulary size |V s

| is the number
f unique words that appear in the training corpus. Depending
n how to define the context, Stage 1 can be built upon either
unidirectional LM using only past words or a bidirectional LM
sing both past and future words.
When token ws

t is a word, v, in V s at time t , the input to the L-
ayer LM is an N-dimensional single-sense word representation,
t , which is one column of the single-sense embedding matrix
∈ RN×|V s

|. At each time step t at the l-th hidden layer, hidden
ector hl

t is calculated from lower-layer hidden vector hl−1
t and

he previous hidden state vector, hl
t−1. For the lowest layer, h0

t
s defined as representation vector xt of the t-th input word
s
t . Then, hL

t can encode the processed historical information as
ontext vectors. The context vector representation for token ws

t is
enoted by

context (ws
t ) = hL

t−1. (1)

One can easily extend this unidirectional LMs into bidirec-
ional LMs for the estimation of word embedding vectors. Bidi-
ectional LSTMs (BiLSTMs) are designed by implementing both
orward and backward LSTMs in parallel at each layer. BERT is
asically a Transformer-based bidirectional model without the
ackward masking in GPT.
In Stage 1, a deep LSTM, a deep BiLSTM, a GPT, or a BERT

M is trained to minimize the negative log-likelihood (NLL) of
he training sequence. As a result, one can obtain the implicit
nd explicit features for the words, i.e., optimized context vector
context and single-sense word embeddings X.

.2. Stage 2: Sense labeling via unsupervised clustering

Stage 2 is based on the philosophy of the context clustering

ethod used in the word sense induction task (Schütze, 1998).
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s shown in Fig. 1(b), context vectors of a specific word are
rouped according to similarity through unsupervised clustering.
e adopt the k-means clustering algorithm, which is the most

ntuitive and fastest method (Lloyd, 1982).
When a word v ∈ Vs occurs Rv times in the corpus, the

et Hv of context vectors with a word v is denoted by Hv =

hcontext (v(1))...,hcontext (v(Rv))}. The number of context vectors in
word is the same as the number of times the word appears in

he corpus.
Given an M-dimensional set of Rv data points (i.e., context

vectors) for a word v in Hv ∈ RM×Rv , the algorithm divides these
oints into Kv(≤ Rv) clusters.
After clustering convergence, the sense of word v for each oc-

urrence in the training corpus is assigned to the cluster with the
losest centroid µv

k (k ≤ Kv) in terms of the Euclidean distance as

v(r) = argmink=1,...,Kv
∥hcontext (v(r)) − µv

k∥, (1 ≤ r ≤ Rv), (2)

where hcontext (v(r)) is the r-th context vector of word v, which
means that each word v is divided into Kv tokens for multi-sense
M learning in the next stage. Note that this clustering process
roceeds separately for each word.
In our experiments, we consider two options to set the num-

er of clusters (senses) Kv , i.e., a fixed number and different
umbers of clusters for each word. For the latter, we estimated
he number of clusters with the gap statistic method (Tibshirani,
Walther, & Hastie, 2001). A detailed analysis on this estimation
of cluster number is presented in Section 5.1.3.

3.3. Stage 3: Multi-sense LM learning

Although the cluster means in Stage 2 were used for multi-
sense embedding vectors in previous works (Li & Jurafsky, 2015),
for improved performance we only use the multi-sense labels and
re-train LMs in Stage 3.

Stage 3 is very similar to Stage 1 with only one important dif-
ference. The input and output tokens in Stage 1 are single-sense
words, while those in Stage 3 are multi-sense tokens obtained
from Stage 2, which is equivalent to increasing the vocabulary
size from |V s

| to |Vm
| =

∑
v∈Vs Kv . Therefore, multi-sense tokens

wm from the same word ws now learn different representations
to become a multi-sense LM.

3.4. Performance metrics for the language modeling task

Perplexity (PPL) has been widely used as a performance metric
of LMs. Since PPL is based on the likelihood of a sentence, it is
sensitive to the number of words in the corpus. However, the
single-sense and multi-sense LMs from the same corpus result in
different vocabulary sizes, and we propose a new metric, i.e., the
unigram-normalized PPL (PPLu).

The PPL of an LM is defined as the length-normalized inverse
geometric average probability of word sequences and estimated
by

PPL = P(w1, . . . , wT )−
1
T =

(
T∏

t=1

P(wt |w1:t−1)

)−
1
T

, (3)

where T is the length of a sequence, and wt is the word at time t
in a sentence. An LM that achieves a higher probability for word
sequences obtains a lower PPL value.

This PPL metric is suitable for comparing LMs with the same
vocabulary. However, PPL may not be suitable for comparing LMs
 w
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with different vocabulary sizes. A larger vocabulary size tends to
result in lower word and sentence probabilities and thus in higher
PPL.

To overcome the limitation of PPL, we adopt the basic idea
of normalizing the word probability with respect to a quantity
containing the vocabulary size. The proposed PPLu is defined as

PPLu =

(
T∏

t=1

P(wt |w1:t−1)
Puni(wt )

)−
1
T

=
P(w1, w2, . . . , wT )−

1
T(∏T

t=1 Puni(wt )
)−

1
T

, (4)

where T is the length of a sequence and the unigram probability
is computed as

Puni(wt = vk) =
Count(vk)∑

|V |

k′=1 Count(vk′ )
= P(wt ), (5)

where Count(vk) is the number of occurrences of word vk in
the corpus. This metric shows the likelihood improvement of
a context-dependent LM from the simple unigram LM without
context information, and therefore enables us to evaluate the
effectiveness of a context-dependent LM.

From (4), we may interpret the PPLu in terms of the Kullback–
eibler (KL) divergence and mutual information (MI) as

log PPLu = −
1
T

T∑
t=1

log
P(wt |w1:t−1)

P(wt )

= −KL(P(wt |w1:t−1) ∥ P(wt ))

= −
1
T

T∑
t=1

log
P(wt , w1:t−1)
P(wt )P(w1:t−1)

= −I(wt; w1:t−1).

(6)

L(a ∥ b) and I(a; b) denote the KL divergence of a from b and MI
etween a and b, respectively. Utilizing the context information
1:t−1, high-performance LMs make P(wt |w1:t−1) diverge from
(wt ) and increase the amount of shared information between
t and w1:t−1. Therefore, PPLu becomes smaller for better LMs.
Additionally, we present how the proposed PPLu is affected

y the number of words in the corpus. We show a very simple
xample in which a word vab is used confusingly for two words,
a and vb. If a sentence does not include vab, the split does not
ave an effect on either PPL or PPLu. If a sentence includes either
a or vb as the τ th word, then

log PPLu = −
1
T

[log P(w1, . . . , wτ = (va or vb), . . . , wT )

−{

T∑
t ̸=τ

log P(wt ) + log P(wτ = (va or vb))}].
(7)

f word vab actually has only one meaning and we randomly
ssign va or vb instead of vab with probabilities β and (1-β),
espectively, then

P(va) = βP(vab), P(vb) = (1 − β)P(vab),

P(w1, . . . , wτ = va, . . . , wT ) = βP(w1, . . . , wτ = vab, . . . , wT ),

P(w1, . . . , wτ = vb, . . . , wT ) = (1 − β)P(w1, . . . , wτ = vab, . . . , wT ).

(8)

Therefore, for a sentence with va,

log PPLu = −
1
T

[logβ + log P(w1, . . . , wτ = vab, . . . , wT )

−{

T∑
t ̸=τ

log P(wt ) + logβ + log P(wτ = vab)}],
(9)

hich is exactly the same as the PPLu value of the original case
ithout splitting. It is worth noting that the split makes log PPL
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ncrease by − logβ/T . Moreover, the same is true for sentences
ith vb. In this case, although the vocabulary size is increased by
, PPLu is invariant with the split of a word. Since the two words
a and vb are semantically identical, this simple split should not
esult in a difference in LM performance.

If the word vab has multiple senses and is divided into multiple
okens based on meaning, then the split is no longer random,
nd β , the ratio of P(..., wi = va, . . .) to P(..., wi = vab, . . .), is
o longer a fixed constant and depends upon the other words in
he sentence. Therefore, PPLu values with and without the split
ecome different. Since PPLu is invariant with the vocabulary size
nd is only a function of the mutual information between wt
nd w1:t−1, the difference in value of PPLu purely comes from
M performance. It is straightforward to extend this analysis to
ultiple splits and many multi-sense words.

. Data and experimental settings

.1. Datasets

To validate our method in LM performance, we used three
enchmark language modeling datasets, i.e., the SemCor (Miller,
eacock, Tengi, & Bunker, 1993), PTB (Marcus, Marcinkiewicz, &
antorini, 1993), and Text8 (Mikolov, Joulin, Chopra, Mathieu,
Ranzato, 2014) datasets. Also, eight NLP tasks of the General

anguage Understanding Evaluation (GLUE) benchmark (Wang
t al., 2018) and the three tasks of the SuperGLUE (Wang et al.,
019) benchmark were evaluated.
The three language modeling datasets differ in their number

f tokens and vocabulary sizes, as summarized in Table 1. The
emCor dataset contains text data extracted from the Brown Cor-
us and their sense annotation from the New Oxford American
ictionary (NOAD) or WordNet inventory. The SemCor dataset
as selected due to its availability of human-annotated multi-
ense labels. The PTB dataset is a subset of the Wall Street Journal
WSJ) dataset, which contains news articles on business-oriented
opics. The Text8 dataset is derived from a Wikipedia dump and
ontains much broader topics compared to the PTB dataset.
The GLUE benchmark includes nine general NLP tasks, i.e., two

ingle-sentence classification tasks, such as CoLA (Warstadt, Singh,
Bowman, 2019) and SST-2 (Socher et al., 2013), and seven

entence-pair classification tasks, such as MRPC (Dolan & Brock-
tt, 2005), QQP, STS-B (Cer, Diab, Agirre, Lopez-Gazpio, & Specia,
017), MNLI (Williams, Nangia, & Bowman, 2018), QNLI (Ra-
purkar, Zhang, Lopyrev, & Liang, 2016), RTE (Dagan, Glickman,
Magnini, 2005), and WNLI (White, Rastogi, Duh, & Van Durme,
017). We evaluated our models on eight tasks (i.e., SST-2, MRPC,
QP, MNLI, QNLI, RTE, CoLA, and STS-B). For the WNLI task, no
odel in the literature exceeded the most frequent class guessing

56.3%), and it may not be worthwhile to report results in this
aper. Additionally, we evaluated our models for three tasks
n SuperGLUE benchmark. All of these tasks are sentence-pair
lassification tasks. Specifically, BoolQ (Clark et al., 2019) and
ultiRC (Khashabi, Chaturvedi, Roth, Upadhyay, & Roth, 2018) are
QA-based task, and WiC (Pilehvar & Camacho-Collados, 2019)

s a word sense disambiguation task. The other tasks are either
ased on tiny datasets or almost the same as that in GLUE.

.2. Selection of multi-sense words

Stage 2 needs to identify which words may have multiple
enses. However, such ground-truth annotations do not exist in
ost text datasets, including the PTB and Text8 datasets, and hu-
an annotation requires considerable effort. For computational
fficiency, we removed two types of words from the multi-sense
ord candidates. First, we excluded stop words (i.e., words with
402
able 1
ata statistics for language modeling datasets. |V | is the vocabulary size, and |T |

is the total number of tokens in the dataset. The SemCor dataset has annotated
sense labels by human experts for all data.
Dataset |V | |T |

SemCor all-words (SemCor) (Miller et al., 1993) ≈10 k 0.43 M
Penn Treebank (PTB) (Marcus et al., 1993) 10 k 1 M
Text8 (Mikolov et al., 2014) ≈44 k 17 M

very little meaning such as ‘‘is’’ and ‘‘are’’). In employing the stop
word list in the NLTK toolkit (Loper & Bird, 2002), we removed the
stop words that accounted for approximately 50% of the overall
data in each dataset (e.g., corresponding to 132 stop words for
the PTB dataset). Second, we excluded rarely appearing words for
effective clustering with enough samples. After these exclusions,
the remaining 1854 words for the PTB dataset, 1755 words for
the SemCor dataset, and 11,147 words for the Text8 dataset were
used as possible multi-sense words. Note that Stages 1 and 3 still
utilized all the words in the corpus.

4.3. Network architecture

In Stages 1 and 3, LMs with multi-layer LSTM or Transformer
modules are incorporated. For some implementations the word
embedding dimension is specified with ‘‘-W’’ prefix in the model
name, e.g., LSTM–W650. The dimension of hidden representation
is the same as that of word embedding. For each dataset, we
examined various architectures and hyperparameters, i.e., em-
bedding dimensions and sense numbers.

5. Experimental results

In this section, we perform the language modeling task on the
SemCor, PTB, and Text8 dataset, and the NLU tasks on the GLUE
and SuperGLUE benchmarks.

For all experimental results, we conduct Welch’s t-test to iden-
tify the statistically significant differences in the results between
the models with single-sense tokens and multi-sense tokens for
the same network. We mark star(*) when significant difference
(P < 0.05) occurred.

5.1. Performance on the language modeling task

For each dataset, we report the results of two LSTMs with dif-
ferent word embedding dimensions. Following Kim et al. (2016),
we train LSTM with two hidden layers via truncated
backpropagation-through-time. We use stochastic gradient de-
scent with backpropagation for 35 time steps. Additionally, for
the Text8 dataset, we add Transformer-based unidirectional LM,
i.e., GPT-2, with a similar number of parameters. We train a 12-
layer network with 12 attention heads. Following Radford et al.
(2019), we used Adam optimizer with a 0.0001 max learning
rates.

5.1.1. Results on a fixed number of senses for all words
The SemCor dataset is small but has human-annotated la-

bels for multiple senses. Because no previous LM method has
been evaluated on the SemCor dataset, we compared our LSTM-
based methods of several different sense numbers, i.e., all single
sense, all 5 senses, exact number of senses for each word, and
exact sense labels. The third and fourth are possible due to
the existence of the ground-truth multi-sense labels. Here, we
construct small models due to the size of the SemCor dataset
and, as expected, the model with 400 embedding dimension re-
sults in much better performance than that with 100 embedding
dimension.
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able 2
erformance on the SemCor dataset. The bold font indicates the best unigram-
ormalized perplexity (PPLu) for the same model. Here, ‘‘Exact Numbers’’ and
‘Exact Labels’’ denote the MSLMs with the exact number of senses (K) for each
ord and the exact sense labels in the dataset, respectively. Star(*) indicates
ignificant difference (P < 0.05) between single-sense and multi-sense models
ith the same network. PPL is not designed to compare LM performance

between different vocabulary sizes, and is shown for reference only.
Model Number of senses Metrics

PPL PPLu

LSTM–W100 1 for all 116.5 0.2491
5 for all 142.9 0.2137*
Exact Numbers 137.8 0.1934*
Exact Labels 142.2 0.1969*

LSTM–W400 1 for all 102.6 0.2195
5 for all 134.1 0.2005*
Exact Numbers 130.1 0.1824*
Exact Labels 131.7 0.1848*

It is worth noting that the multi-sense LMs inherently use a
arger vocabulary size than the single-sense LMs, and thus result
n higher PPL values. The PPL values of multi-sense LMs with the
xact labeled senses are still much larger than those of single-
ense LMs, which proves that PPL is not a good measure for
omparing LM performance between two datasets with different
ocabulary sizes.
In terms of the proposed PPLu measure, as expected, the

ulti-sense LMs show much better performance than the single-
ense LMs with the same embedding dimension. Compared to
he single-sense LMs the multi-sense LMs with 5 sense clusters
or all words reduce PPLu by 14.2% (from 0.2491 to 0.2137) and
.7% (from 0.2195 to 0.2005) for the word embedding dimensions
f 100 and 400, respectively. Then, the multi-sense LMs using
he exact number of senses for each word further reduce PPLu
y another 9.5% (from 0.2137 to 0.1934) and 9.0% (from 0.2005
o 0.1824), respectively. The LMs with exact sense labels are
xpected to be the best, but are slightly worse than those from
xact sense numbers. The difference is within the error margin
f the model and small dataset, which shows that our clustering
lgorithm results in almost optimal clusters. This result implies
hat the precise estimation of the number of senses can improve
M performance.
Additionally, Table 2 shows that the PPL/PPLu value are quite

imilar for LMs with different embedding dimensions, but show
ig differences with different sense numbers. This finding was
ttributed to the definition of PPLu, which is a normalized PPL

using unigram probabilities. By definition, the models that shared
the same unigram probabilities showed the same ratio value

of PPL/PPLu =

(∏T
t=1 Puni(wt )

)−
1
T
. Because the settings under

different numbers of senses (e.g., 1 for all vs. 5 for all) used
different word vocabularies and thus different PPL/PPLu.

We conduct Welch’s t-test to identify the statistically signif-
cant differences in the results of single-sense and multi-sense
Ms with the same network architecture. Specifically, the PPL
(or PPLu) scores of the test sentences were used as samples for
the t-test (i.e., sample no. = 1,641 for each model), and the null
hypothesis assumed that the scores of the two models exhibit no
meaningful difference. By rejecting the null hypothesis with p =

.05, we confirm that the following observations are statistically
ignificant: (i) multi-sense LMs show superior performance to
ingle-sense LMs. (ii) multi-sense LMs with ground-truth sense
nformation (i.e., exact sense numbers and exact sense labels)
how better PPLu than the LMs with a fixed number of senses. (iii)
here is no significant difference between the multi-sense LMs
ith ground-truth sense numbers and sense labels.
403
Table 3
Performance of single-sense (SS) and multi-sense (MS) LMs on the PTB dataset.
The metrics PPL and PPLu correspond to perplexity and unigram-normalized
perplexity, respectively. The bold font indicates the best PPLu for all experiments.
Star(*) indicates significant difference (P < 0.05) between SS and MS models
with the same network.
Model SS/MS (Number of sense(s)) Metrics

PPL PPLu

LSTM–W200 SS (K = 1) (Kim et al., 2016) 97.6 0.1527
MS (K = 9) 129.2 0.1051*

LSTM–W650 SS (K = 1) (Kim et al., 2016) 85.4 0.1336
MS (K = 9) 124.8 0.1015*

LSTM-variants with augmented loss (Inan
et al., 2016)

73.2 0.1145

with continuous cache pointer
(Grave et al., 2016)

72.1 0.1128

Table 4
Performance of single-sense (SS) and multi-sense (MS) LMs on the Text8 dataset.
The best results among all experiments are shown in bold fonts. Star(*) indicates
significant difference (P < 0.05) between SS and MS models with the same
etwork.
Model SS/MS (Number of senses(s)) Metrics

PPL PPLu

LSTM–W300 SS (K = 1) 159.4 0.1138
MS (K = 9) 199.9 0.0503*

LSTM–W650 SS (K = 1) 174.8 0.0898
MS (K = 9) 137.8 0.0440*

GPT2–W600 SS (K = 1) 98.9 0.0706
MS (K = 9) 153.4 0.0386*
MS (K = 9) with GPT2 at Stage 1 150.0 0.0360*

To compare our results with existing published results, we also
applied our methods to the PTB dataset and the Text8 dataset.
Some PPL values were imported from the published literature,
nd PPLu values were evaluated from PPL and unigram probabil-

ities.
Table 3 shows the comparison on the PTB dataset. Our results

are obtained with LSTM LMs with 200 and 650 word embedding
dimensions. Although there exist several published results that
do not use LSTM, e.g., Kneser Ney smoothing, RNN (Mikolov
et al., 2011), CNN (Wang, Lu, Li, Jiang, & Liu, 2015), and Sum–
Product Net (Cheng et al., 2014), they perform significantly worse
than LSTM. Therefore, we use the LSTM-based LMs as our single-
sense LM. In terms of the proposed PPLu, our multi-sense LMs
with 9 senses performed much better than the single-sense LMs.
Notably, the small-size multi-sense LM outperforms both the
large-size single-sense LMs. Additionally, the improvements from
single-sense to multi-sense LMs on the same network architec-
tures are significant, i.e., a 31.2% reduction from 0.1527 to 0.1051
and a 24.0% from 0.1336 to 0.1015 for the 200 and 650 embedding
dimensions, respectively.

Table 4 shows the comparison on the Text8 dataset, which is
larger than the PTB and SemCor datasets in terms of vocabulary
size and number of words. For our multi-sense LMs, we employ
the same architectures used on the PTB dataset to test their
scalability on medium-scale data. With this much larger Text8
dataset, we are also able to incorporate the GPT-2 LMs in Stage 3.

Again, we observed a similar trend in the results. In terms of
PPLu, even the small multi-sense LSTM LM with 300 embedding
dimension showed better performance than single-sense LMs
with larger embedding dimension including GPT-2 and the neural
cache model (Grave et al., 2016) (PPL is 99.9 and PPLu is 0.0713).
n addition, multi-sense GPT-2 models show significantly better
erformance than all the others. For examples, the PPLu values
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Fig. 2. Performance of our LSTM-based multi-sense LMs for a different number of senses (clusters) on the (a) SemCor, (b) PTB, and (c) Text8 datasets. The results
obtained with K = 1 correspond to the single-sense LSTM-LMs. The results obtained with K > 1 correspond to our multi-sense LMs based on LSTM–W400 or
STM–W650.
s

f multi-sense LMs become much smaller than those of single-
ense LMs by 55.8% (from 0.1138 to 0.0503) for LSTM–W300,
y 51.0% (from 0.0898 to 0.0440) for LSTM–W650, and by 45.3%
from 0.0706 to 0.0386) for GPT2–W600.

Also, we found that the LM model in Stage 3 is more important
han that in Stage 1. While the other LMs in Stage 1 are based on
STM, that of the bottom row in Table 4 is implemented with
PT-2. Therefore, the difference between PPLu values at the first
nd second rows from the bottom come solely from the different
M models in Stage 1. By changing LM model from LSTM to GPT-
in Stage 1 with the same GPT-2 model in Stage 3, we obtain
nly 6.7% reduction of PPLu (from 0.0386 to 0.0360). On the other
and, with the same LSTM-based LM in Stage 1, the change of LM
rom LSTM to GPT-2 in Stage 3 resulted in 12.3% (from 0.0440 to
.0386) reduction of PPLu values.

.1.2. Effects of the number of senses on LM performance
The number of clusters (i.e., the number of senses per word),

, is an important hyperparameter for the k-means clustering in
Stage 2, which affects multi-sense LM performance in Stage 3.
Here, we investigate how the number of clusters, K, affects per-
formance. We show the results from the same LSTM models for
both Stages 1 and 3. For the case with K = 1 (which is identical
to single-sense LM), the results of LSTM models in Stage 1 are
reported. For each case with K>1, we accordingly form new vo-
cabularies and train our LSTM-based multi-sense LMs in Stage 3.
We perform this experiment for each dataset.

Fig. 2 shows the effect of varying K, and we can make two
observations, i.e., (i) data characteristics affect the proper number
of clusters, and (ii) PPL and PPLu show different trends. Regarding
(i), the number of clusters for the best PPLu depends upon dataset
i.e., K = 5 for SemCor, K = 9 for PTB, and K ≥ 17 for Text8). The
ext8 dataset is much larger and has broader topics than the PTB
nd SemCor datasets, which may lead to a larger optimal number
f clusters. Therefore, it is necessary to find the proper number
f clusters for each corpus.
Regarding (ii), PPL values increase monotonically as the num-

er of clusters increases (i.e., the vocabulary size increases). This
esult again supports that PPL is not suitable for comparing LMs
ith different vocabulary sizes. On the other hand, as the number
f clusters increase, PPLu values decrease initially and eventually
onverge to fixed values or even increase. For small SemCor
ataset the large numbers of senses may result in overfitting,
hile the large number of clusters may not harm much for
he largest Text8 dataset. Provided enough training data were
vailable, the extra number of clusters may just result in splitting
sense into several clusters, which does not change PPLu values
s demonstrated in Section 3.4.

.1.3. Results with the estimated number of senses for each word
In Table 5, we show both the multi-sense LM performance

n Stage 3 and the clustering performance in Stage 2. We also
mploy the gap statistics methods (Tibshirani et al., 2001) to esti-
ate the number of clusters for each word. Specifically, given the
404
Table 5
Experimental results on the SemCor, PTB, and Text8 datasets with the esti-
mated optimal number of senses for each word. Bold fonts indicate the best
performance on each dataset. For the SemCor dataset with annotated sense
labels, clustering results in Stage 2 are evaluated with the Adjusted Rand Index
(ARI) and Normalized Mutual Information (NMI). Star(*) indicates significant
(P < 0.05) difference between single-sense and multi-sense models with the
ame network.
Datasets Number of senses Metrics

PPL PPLu ARI NMI

SemCor Fixed K = 1 102.6 0.2195
Fixed K = 5 134.1 0.2005* 7.1 20.7
Gap statistics 135.1 0.1970* 7.1 24.2
Exact Numbers 130.1 0.1824* 10.2 34.5

PTB Fixed K = 1 85.4 0.1336
- -Fixed K = 9 124.8 0.1015*

Gap statistics 124.5 0.1029*

Text8 Fixed K = 1 98.9 0.0706
- -Fixed K = 9 174.8 0.0440*

Gap statistics 175.3 0.0475*

learned context embedding vectors of each word occurrence in
Stage 1, we perform k-means clustering by varying the number of
clusters, K, in a range of 1≤K≤Kmax. Then, we select the best value
of K by evaluating the KL divergence of each cluster from uni-
form random distribution. It assumes that uniformly distributed
clusters are not good.

By estimating the number of senses for each word with the
gap statistics method, the PPLu values of multi-sense LMs became
smaller than or similar to those of the exact-numbers. For the PTB
dataset, PPLu value with the gap statistics method is comparable
to that of fixed sense number (K = 9). However, for the largest
Text8 dataset, the gap statistics method results in slightly poorer
performance.

Fig. 3 shows the distributions of the estimated number of
clusters in three datasets. We set the maximum number of senses
(Kmax) for each dataset to 10, which is the same as the maximum
number of senses for SemCor annotation. The average numbers
of clusters for the SemCor, PTB, and Text8, are 5.9, 7.9, and
9.2, respectively. Results of the gap statistics method result in
a similar number of clusters as those of the best PPLu. On the
other hand the numbers of words with larger number of clusters
(K ≥ 7) are still increasing, which may give us a hint for the
needs of even larger number of clusters. Actually, with the largest
word size in the Text8 dataset, there may be words with quite
large number of senses. Note that the use of the same number
of senses requires a hyperparameter search to find an optimal
K. In contrast, the use of an estimation method does not require
such a time-consuming search and is a more natural approach to
processing words with a different number of senses.

Additionally, we include a quantitative evaluation of the clus-
tering results of Stage 2 with two additional evaluation metrics,
i.e., the ARI (Hubert & Arabie, 1985) and NMI (Kvalseth, 1987).
Both ARI and NMI have an expected value of ‘‘0’’ for independent



J. Roh, S. Park, B.-K. Kim et al. Neural Networks 142 (2021) 397–409

i

Fig. 3. Distribution of the number of clusters derived from the gap statistics methods on the (a) SemCor (blue), (b) PTB (green), and (c) Text8 (yellow) datasets. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Scatterplot of the number of samples per word and the ARI.
clusters and ‘‘1’’ for identical clusters. To evaluate the clustering
performance, the ground-truth clustering labels are needed, and
results on the SemCor dataset only are reported here. Following
the common practices, we multiply the ARI and NMI values by
100. As shown in Table 5, both the ARI and NMI values of the
models using exact and estimated number of clusters become
higher than those of models using a fixed number of clusters.
Moreover, the NMI value of the model using the estimated num-
ber of clusters has higher than those of the fixed number of
clusters (K = 5). These results are in agreement with the tendency
of PPLu.

Although the ARI and NMI values with exact sense numbers
are expected to be the closest to the ground-truth clusters, they
are much smaller than those of exact labels, i.e., ARI=NMI=100,
due to the small number of samples for each word. Fig. 4 shows
a scatter plot of words in (the number of samples per word) and
(the ARI value) space. One dot represents a word, and the color
of the dot represents the number of senses in the word. We ob-
served that the variance in the ARI value increases as the number
of samples per word decreases. This phenomenon is especially
critical for the ARI measure, which is based on selecting 2 samples
in the same cluster. Since 50% of the words in the SemCor dataset
have less than 10 samples per word, the ARI values are much
smaller than expected. Even with the exact number of clusters,
the clustering becomes noisy with a small number of samples.
If a sufficient number of samples is provided for each word, the
overall average value of ARI can be expected to increase.
405
5.1.4. Nearest-neighbor words with multiple senses
In Table 6, we further present our qualitative results on the

SemCor dataset in terms of the nearest-neighbor words. For each
query word with a single-sense LM, we found top-3 nearest
words based on Euclidean distance in the word embedding space.
However, due to the multi-sense property, the nearest-neighbor
words do not show any consistency. Also, for each query word
with a multi-sense LM, we found top-2 senses and their top-
3 nearest neighbor words. Both the exact numbers of clusters
(denoted as ‘‘Exact Sense Numbers’’) and the ground-truth sense
labels (denoted as ‘‘Exact Sense Labels’’) are compared. For the
query ‘‘like’’, its two sense embedding vectors show two distinct
neighbors, one as a verb and the other as a preposition. The near-
est neighbors of the query ‘‘most’’ also show distinct usages as de-
terminer and adverb. However, the word ‘‘may’’ is used as an aux-
iliary verb in almost all training samples, and its other usages (as
the fifth month of the year) contribute little to the cluster learn-
ing. Therefore, all sense clusters may result in similar embedding
vectors and have the same neighbors. All these phenomena are
related to the fact that the multi-sense clustering works well.

Similarly Table 7 qualitatively compares the nearest-neighbor
words of single-sense and multi-sense representations on the
Text8 dataset. Again, the single-sense and multi-sense repre-
sentations lead to similar but slightly different tendency. For
example, the query ‘‘may’’ in the multi-sense LM now has two
distinct neighbor words, one for the auxiliary verb and the other
for a month of the year. The larger data size may contribute to
this better clustering results.
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Table 6
Top-3 nearest-neighbor words of the single-sense and the multi-sense representations from LSTM–W400 in the
SemCor dataset.
Query like most then may

Single-sense
including some finally might

met many otherwise shall
provides five already should

Exact sense numbers
wanted by many relatively sometimes night should would
want about five perfectly merely moment must might
used including seven extremely once here would will

Exact sense labels
need including many too recently years shall might
want by some quite sometimes night must should
wanted against five become suddenly moment could simply
Table 7
Top-4 nearest-neighbor words of the single-sense and the multi-sense representations from LSTM–W650 in the
Text8 dataset.
Query may banks fox rock

Single-sense

might generators lancaster jam
can vicinity richardson bluegrass
to bubbles turner funk

could capitalists robertson ceramic

Multi-sense

june shall shores corporations nbc panda wind pop
august might corners businesses hbo dodo springs punk
april cannot tributaries firms cbs kangaroo cave blues
december otherwise slopes agencies aol dish sand techno
5.2. Performance on the NLP benchmarks

We compare performance on several downstream NLP tasks
ased on the GLUE and SuperGLUE benchmarks.

.2.1. Setup
To ensure a fair comparison of the representations, all

aselines were trained from scratch on the Text8 dataset
Section 5.2.2) with the dimensionality of the embeddings set to
00 (default). The same model is used for both the single-sense
nd multi-sense LMs in Stages 1 and 3.
For the LSTM-based LMs, the pretrained embedding vectors

ere used as inputs to the BiLSTM encoder, which was trained for
ach downstream task. In the single-sentence classification task,
ST-2, similar to Wang et al. (2018), we used a two-layer BiLSTM
ith 1,200-dimension embedding vectors each for forward and
ackward directions with max pooling as the sentence encoder.
he output of this sentence encoder is fed to the task classifier.
n the sentence-pair classification tasks, i.e., MRPC, QQP, MNLI,
NLI, RTE, BoolQ, WiC, and MultiRC, following Mou et al. (2015),
e independently encoded each of the sentences h1 and h2 and
assed the feature vectors [h1; h2; h1 · h2; h1 − h2] to a task

classifier.
For the Transformer-based models, the parameters of the pre-

trained models were fine-tuned for each downstream task. Due
to the memory capacity of our GPU system we used 12-layer
networks with 12 attention heads and 128 time steps. Following
the original papers, we used Adam adaptive learning rates with
0.0001 as a maximum learning rate. The final hidden state vector
corresponding to the special classification token for ‘‘Classifica-
tion’’ was used as a sentence representation for classification
tasks.

Our baseline models are described below.

• CBoW and SG+CRP (Li & Jurafsky, 2015): These are n-gram
methods and included only for reference purpose. The
CBoW is a single-sense model, while the SG+CRP utilizes
skip-gram (SG) embedding learning and unsupervised clus-
tering of multiple senses by Chinese Restaurant Process
(CRP). Each sense token is assigned by using a greedy search
406
algorithm. The codes for SG+CRP have been provided at htt
ps://github.com/jiweil/mutli-sense-embedding.

• LSTM and BiLSTM: Follows to Kim et al. (2016), the LSTM is
a two-layer LSTM LM. Word embeddings of 300 dimensions
are used as the input to the sentence encoder. The BiLSTM
is a two-layer BiLSTM LM as Melamud et al. (2016). Output
embeddings of 300 dimensions are used as the pretrained
input to the sentence encoder.

• GPT2 and BERT: We follow the implementation of GPT-
2 described in Radford et al. (2019) and BERT in Devlin
et al. (2019) with a word-sense embedding dimension of
600. To match the vocabulary size of the other baseline
models, we do not use subword embedding in GPT-2 and
BERT and use a word-sense embedding only. The codes for
GPT-2 and BERT have been provided at https://github.com/
huggingface/transformers.

• XLNet: XLNet is a variant of Transformer-based LMs with
bidirectional contexts. We follow the training procedures
used in Yang et al. (2019) with a word/sense embedding
dimension of 600.

5.2.2. Results on the GLUE benchmark
Table 8 shows performance on the GLUE benchmark. For the

same network architecture and parameters, the performance of
multi-sense LMs is better than or similar to that of single-sense
LMs for all tasks. Especially, multi-sense GPT-2 and BERT achieved
significantly higher scores on the textual entailment tasks such
as MNLI and QNLI. However, the multi-sense token method does
not help much in improving performance on the RTE task. Also,
GPT-2 and BERT result in similar to each other, but better than
LSTM-based models on several tasks and on average. On the other
hand the multi-sense LSTM LM achieved the highest accuracy
(77.7%) on the MRPC task, which evaluates the semantic similarity
between two sentences. These results confirm that our sense-
level tokens can help improving the performance of various LM
models including LSTMs and Transformers. Similarly, another
unsupervised multi-sense model, SG+CRP, showed higher scores
than the single-sense CBoW method. However, these n-gram
models are inferior to the LSTM and Transformer-based LMs.
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erformance on the GLUE benchmark. All models are pretrained on the Text8
ataset. For CoLA and STS-B, we report the Matthews correlation coefficients
nd the averaged values of the correlation coefficients, respectively. For all
ther tasks an accuracy is reported for each task and also their average value.
erformance of single-sense CBoW reported in Wang et al. (2019) and multi-
ense SG with CRP in Li and Jurafsky (2015) is reported for reference only.
old fonts indicate the best performance for each task. Except the average
ccuracy, a star(*) indicates statistically significant difference (P < 0.05) between
ingle-sense and multi-sense models with the same network.
Model SS/MS Avg. SST-2 MRPC QQP MNLI QNLI RTE CoLA STS-B

CBoW SS 69.1 80.0 73.4 79.1 56.0 72.1 54.1 0.0 60.0
SG+CRP MS 72.7 78.3 74.3 84.6 67.1 73.2 58.5 8.6 67.9

LSTM SS 73.8 80.2 75.0 85.3 67.9 74.7 59.9 15.9 69.8
MS 74.6 81.2* 77.7* 86.2* 67.5* 75.0* 59.9 20.8* 69.4*

BiLSTM SS 73.5 79.4 75.7 84.9 67.5 75.1 58.1 18.0 67.7
MS 74.3 81.7* 76.0 86.1* 68.1* 74.4* 59.6* 18.1* 71.9*

GPT2 SS 73.2 85.9 71.8 82.7 64.7 75.3 58.8 18.4 41.3
MS 76.2 86.7* 74.0* 86.7* 72.8* 77.9* 58.8 17.3* 69.6*

BERT SS 72.7 85.0 72.1 82.7 63.8 74.7 58.1 16.6 30.9
MS 76.4 85.1 73.3* 86.4* 73.3* 80.4* 59.9 17.5* 69.3*

Table 9
Performance of single-sense (SS) and multi-sense (MS) models on three tasks in
the SuperGLUE benchmark. For BoolQ and WiC, we report accuracies, while we
report F1 on all answer-options for MultiRC. In the Avg. column, we report the
average value of all tasks. Performance of CBoW was reported in Wang et al.
(2019). Bold fonts indicate the best performance for each task set. A star(*)
indicates significant difference (P < 0.05) between SS and MS models with the
same network.
Model SS/MS Avg. BoolQ WiC MultiRC

CBoW SS 46.0 62.4 55.3 20.3
SG+CRP MS 58.7 64.7 59.7 51.6

LSTM SS 61.7 69.1 61.4 54.6
MS 62.3 68.8* 63.0* 55.2*

BiLSTM SS 62.0 69.3 61.8 55.0
MS 62.6 69.4* 63.0* 55.5*

GPT2 SS 62.2 68.9 60.2 57.4
MS 63.1 69.4* 60.2 59.7*

BERT SS 62.1 67.2 60.2 58.9
MS 62.6 67.8* 60.2 59.9*

XLNet SS 63.7 69.0 62.5 59.5
MS 65.0 69.0 66.0* 59.9*

5.2.3. Results on the SuperGLUE benchmark
Table 9 compares the performance of the single-sense and

ulti-sense LMs on the three tasks (i.e., BoolQ, WiC and MultiRC)
n the SuperGLUE benchmark. The performance of the SuperGLUE
enchmark also shows similar tendency to that of the GLUE
enchmark. For all LMs, the performance of multi-sense tokens
hows better than or similar to that of single-sense tokens. The
LNet model results in the highest scores for average as well
s WiC and MultiRC tasks with both single-sense and multi-
ense tokens. For both single-sense and multi-sense tokens the
iLSTM shows the best score on the BoolQ. We observed that
he SG-based multi-sense model showed poorer performance
han the other LMs due to the difficulties of considering longer
ontexts. These results confirm that multi-sense tokens can help
o improve the performance of various LMs significantly.

. Conclusions

In this paper, we proposed a sense-aware framework that con-
ists of three essential stages, i.e., context representation learning
tage, sense labeling stage, and multi-sense LM learning stage, for
ntroducing multi-sense word tokens. The proposed framework
s the first to integrate the modeling of multi-sense words into
407
arious deep sequence neural LMs, which capture lengthy context
nformation. By incorporating the multi-sense labeling process
ith unsupervised clustering methods, our multi-sense LMs suc-
essfully learn sense-specific representations. The unsupervised
lustering stage is separated from the single-sense representation
earning stage and also the fine-tuning stage with the learned
ulti-sense labels. Therefore, any state-of-the-art LMs can be
asily adopted. Also, the number of senses for each word is esti-
ated for near-optimal performance. This multi-sense clustering
lgorithm is implemented with purely unsupervised learning and
pplicable to almost all datasets. Because of the explicit assign-
ent of different sense tokens to a multi-sense word, the LM task

tself becomes much simpler for the same performance, and the
esulting model is very light in terms of memory and computation
equirements.

Furthermore, we proposed a new evaluation metric, PPLu, and
rovided both theoretical and experimental analyses. The new
etric allows us to assess the performance difference between
ingle-sense and multi-sense LMs with different vocabulary sizes.
By using three language modeling datasets, we demonstrated

hat the proposed multi-sense LMs significantly outperformed
ingle-sense LMs with the same network architectures and pa-
ameters for all LSTM and Transformer-based models. Both uni-
irectional and bidirectional network architectures were imple-
ented. The qualitative results of nearest-neighbor words con-

irmed the benefit of employing multi-sense representations in
ccurately capturing word meanings. Also, multi-sense LMs at-
ained significantly better performance than single-sense LMs
ith the same architecture (LSTM, BiLSTM, GPT2, BERT, and XL-
et) and parameters for many downstream NLP tasks on the
LUE and SuperGLUE benchmarks.
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