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Abstract

Classification of imbalanced data is pervasive but it is a difficult problem
to solve. In order to improve the classification of imbalanced data, this
letter proposes a new error function for the error back-propagation algorithm
of multilayer perceptrons. The error function intensifies weight-updating
for the minority class and weakens weight-updating for the majority class.
We verify the effectiveness of the proposed method through simulations on
mammography and thyroid data sets.
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1. Introduction

In many classification problems, unusual or interesting class is rare among
a general population. This data imbalance has been reported in a wide
range of applications such as credit assessment[1], gene ontology[2], remote
sensing[3], bio-medical diagnoses[4], etc. However, conventional classifiers
show poor performances in these applications since they are based on the
assumption that class priors are relatively balanced and error costs of all
classes are equal[5].

Many methods have been developed for classification of the imbalanced
data. At the data level approach, class distribution is re-balanced by under-
sampling[4, 6], over-sampling[7], or combination of the two[7]. At the algo-
rithmic level, modifying error function[3] adapts existing classifier learning
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algorithms to strengthen learning with regards to the minority class. In ad-
dition, there are cost-sensitive learning and threshold moving methods at the
algorithmic level approach[6, 8]. Also, ensemble scheme has many advantages
over each individual classifier[4, 9].

Among the above approaches, developing a better classifier at the al-
gorithmic level is critical because it is the essential part in the data level
approach or ensemble of classifiers. In this letter, we propose an error func-
tion for the EBP (error back-propagation) algorithm of MLP’s (multilayer
perceptrons). The proposed error function intensifies weight-updating for the
minority class and weakens weight-updating for the majority class. The rest
of this letter is organized as follows. In Section 2, we propose an error func-
tion which can control the strength of weight-updating with regards to the
minority or majority classes. In Section 3, we demonstrate the effectiveness
of the proposed method, and Section 4 concludes this letter.

2. Error Function for Classification of Imbalanced Data

Consider an MLP consisting of N inputs, H hidden, and M output nodes,
which is denoted as “N −H −M” MLP. When a pth training pattern x(p) =
[x

(p)
1 , x

(p)
2 , . . . , x

(p)
N ], (p = 1, 2, . . . , P ) is presented to the MLP, the jth hidden

node is given by

h
(p)
j � hj(x

(p)) = tanh(
N∑

i=0

wjix
(p)
i /2), j = 1, 2, . . . , H. (1)

Here, x
(p)
0 = 1 and wji denotes the weight connecting the ith input xi to hj.

The kth output node is

y
(p)
k � yk(x

(p)) = tanh(ŷk
(p)/2), k = 1, 2, . . . , M, (2)

where ŷk
(p) =

∑H
j=0 vkjh

(p)
j . Also, h

(p)
0 = 1 and vkj denotes the weight con-

necting hj to yk.
Let the desired output vector corresponding to the training pattern x(p)

be t(p) = [t
(p)
1 , t

(p)
2 , . . . , t

(p)
M ], where the class from which x(p) originates is coded

as follows:

t
(p)
k =

{
+1, if x(p) originates from class k
−1, otherwise.

(3)
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We call yk the target node of class k. The conventional error function for P
training patterns is

E =
1

2

P∑
p=1

M∑
k=1

(t
(p)
k − y

(p)
k )2. (4)

To minimize E, weights are iteratively updated by the EBP algorithm[10].
Let us assume that there are two classes, where one is the minority class

C1 with P1 training patterns and the other is the majority class C2 with P2

training patterns (P2 >> P1). Then, weight-updating in the EBP algorithm
is dominated by the P2 patterns and the boundary of the majority class
is enlarged to the minority class[4]. This boundary distortion causes poor
performance[3].

Here, we assume that MLP has two outputs whose targets are coded
as in (3). During training, y2 is selected as a target node P2 times and
y1 is selected P1 times. Thus, in order to prevent the boundary distortion,
we should intensify weight-updating with regards to y1 and weaken weight-
updating with regards to y2. Accordingly, we propose the error function

Eprop = −
P∑

p=1

[

∫
t
(p)
1

n+1
(t

(p)
1 − y

(p)
1 )n

2n−2(1 − y
(p)
1

2
)

dy
(p)
1 +

∫
t
(p)
2

m+1
(t

(p)
2 − y

(p)
2 )m

2m−2(1 − y
(p)
2

2
)

dy
(p)
2 ],

(5)

where n and m (n < m) are positive integers, and t
(p)
k = ±1. If n = m, Eprop

is the same as the nth order error function proposed in [11]. Then, the error
signal of output layer is given by

δ
(p)
k = −∂Eprop

∂ŷk
(p)

=

{
t
(p)
1

n+1
(t

(p)
1 − y

(p)
1 )n/2n−1, where k = 1,

t
(p)
2

m+1
(t

(p)
2 − y

(p)
2 )m/2m−1, where k = 2.

(6)

Since n < m, |δ(p)
1 | ≥ |δ(p)

2 | for −1 < y
(p)
k < 1. That is, the parameters n and

m in (5) generate a strong error signal for the target node of the minority
class, y1, and a weak error signal for the target node of the majority class,
y2. Then, associated weights are updated in proportion to δ

(p)
1 and δ

(p)
2 ,

respectively.
It was reported that the nth order error function with n ≥ 2 shows better

performance than n = 1[11, 12]. Thus, we will use n = 2 for updating weights
associated with the minority class. Although there are many possibilities in
selecting m value which controls the weight-updating for the majority class,
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we will use m = 4 for simplicity. Through many simulations, it was verified
that various m values in the range of 3 ≤ m ≤ 10 show similar learning
performances.

Since the targets are coded as shown in (3), y1 has its target value ‘1′ P1

times and ‘ − 1′ P2 times from total P training patterns. The case of y2 is
vice versa. In order to fix this imbalance, δ

(p)
k ’s are regulated as

δ
(p)
k →

{
γδ

(p)
k , if (k = 1 and t

(p)
k = −1) or (k = 2 and t

(p)
k = 1),

δ
(p)
k , otherwise,

(7)

with the parameter γ = P1/P2. Table 1 summarizes the proposed algorithm.
When applying MLP’s to two-class problems, we can use a single output

architecture. In the imbalanced data problems, however, this letter proposes
to generate a strong error signal for the target node of minority class and
a weak error signal for the other target node. Because of this strategy, the
proposed algorithm adopts the MLP with two output nodes.

In the limit P → ∞, the minimizer of Eprop converges (under certain reg-
ularity conditions, Theorem 1 in [13]) towards the minimizer of the function

E{�n(T1, y1(X)) + �m(T2, y2(X))}, (8)

where E{.} is the expectation operator,

�n(t, y) = −
∫

tn+1(t − y)n

2n−2(1 − y2)
dy, (9)

X is the random vector denoting an input pattern, and Tk is the random
variable denoting the target. �m(t, y) can be represented by substituting n
with m in (9). The expectation is given by

E{�n(Tk, yk(X))} =

∫
[Qk(x)�n(1, yk(x))+ (1−Qk(x))�n(−1, yk(x))]f(x)dx,

(10)
where Qk(x) = Pr[X originates from class k|X = x].

For a fixed Qk(x), 0 < Qk(x) < 1, the optimal solution minimizing the
criterion (8) is given by b(X) = [b1(X), b2(X)]T , whose components are

b1(x) = g(hn(Q1(x))) and b2(x) = g(hm(Q2(x))). (11)
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Here, hn & hm : (0, 1) → (0,∞) and g : (0,∞) → (−1, 1) are given by

hn(q) =

(
1 − q

q

)1/n

, hm(q) =

(
1 − q

q

)1/m

, and g(u) =
1 − u

1 + u
. (12)

Fig. 1 shows the solution with n = 2 and m = 4. Notice that g ◦ hn and
g ◦ hm are strictly increasing and the Bayes classifier can be defined by

decide k , if k = argk[max yk(x)]. (13)

3. Simulations

We have verified the proposed algorithm using “Ann-thyroid”[14] and
“Mammography”[7] data sets. The “Ann-thyroid” data is transformed into
two-class problems. “Ann-thyroid13(23)” refers to a problem where class1(2)
is the minority class while class 3 is treated as the majority class[4]. Tables
2 and 3 describe data set distributions for training and test. For “Mammog-
raphy” data set, we have used “5-fold cross-validation” since its test data is
not provided.

21-16-2 MLP is used for “Ann-thyroid13(23)” and 6-4-2 MLP is used for
“Mammography”. The proposed method is compared with the conventional
EBP algorithm[10], the two-phase method with a parameter T [3], and the
threshold moving method with a parameter TH[6]. In the test phase of
threshold moving method[6], the class returned is argk[max y∗

k] where

y∗
k =

{
1+yk

2
× TH, for k = 1,

1+yk
2

, for k = 2,
(14)

and yk ∈ (−1, 1) is the output of conventional MLP. Learning rates η’s are

derived so that E{η|δ(p)
k |} has the same value in each method[11]. As a re-

sult, we used η = 0.001× [(n + 1) + (m + 1)]/2 for the proposed method and
η = 0.006 for the other methods. Let us denote the accuracy for C1 as A1

and the accuracy for C2 as A2. When data is imbalanced, the total accuracy
is inadequate as a performance measure since it heavily relies on A2. Accord-
ingly, we used the G-Mean (geometric mean) of the two as a performance
measure[4]. During training, the performances for test or validation sets were
measured in every 10 epochs.

We tried various T and TH values for the two-phase and threshold mov-
ing methods, respectively. The best result among them was selected to draw

5



figures. Nine simulations were conducted using each method with same ini-
tializations and the results were averaged to draw figures. The initial weights
were drawn at random from a uniform distribution on [−1× 10−4, 1× 10−4].

Fig. 2 shows the G-Mean in each method for “Ann-thyroid13”. The con-
ventional EBP method shows the worst result. Although the two-phase and
threshold moving methods improved the performance, they show fluctuations
during training. This is due to the incorrect saturation of output nodes, that
is, output nodes are in the wrong extreme region of sigmoid function[11]. On
the contrary, the proposed method shows better result without fluctuations.
Thus, we can argue that the proposed method successfully regulates weight-
updating to resolve the imbalanced data problem. Also, the proposed error
function inherits the characteristic of the nth order error function, which
dramatically reduces the incorrect saturation[11].

For more precise comparison, Table 4(a) shows mean, minimum, and
maximum values of A1, A2, and G-Mean, respectively. To evaluate them,
we extracted A1, A2, and G-Mean values at the epoch which showed the
best G-Mean in every simulation. And those values were used to calculate
the mean, minimum, and maximum values, respectively. As expected, A1

and G-Mean are the worst in the conventional method. The two-phase and
threshold moving methods improved A1 and G-Mean. The proposed method
improved A1 very much and attained the best G-Mean. Also, |A2 − A1| is
minimum in the proposed method.

Fig. 3 and Table 4(b) show the simulation results for “Ann-thyroid23”
data, and Fig. 4 and Table 4(c) correspond to “Mammography”. In these
problems, the simulations show similar tendency of A1, A2, and G-Mean.

4. Conclusion

In this letter, we proposed an error function for the EBP algorithm of
MLP’s in order to improve classification of imbalanced data. The proposed
error function regulated the updating amount of weights with regards to
minority and majority classes. Comparisons were conducted through simu-
lations of “Ann-thyroid” and “Mammography” data sets. The conventional
EBP showed the worst A1 and G-Mean. The two-phase method improved A1

and G-Mean, but it was unsatisfactory. The threshold moving method could
improve the performances further. However, many trials were needed until
finding an optimum threshold value. On the contrary, the proposed method
attained the best result with the criteria of A1, G-Mean, and |A2 − A1|.
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The proposed algorithm assumed that targets of MLP are coded as in
(3) for two-class problems. If we use a different coding of targets, we should
modify the proposed error function Eprop. Also, we may not directly use the
proposed algorithm for multi-class problems with imbalanced data.
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Figure 1: The optimal solutions of yk(X) for minimizing E{Eprop(X)}. E{.} denotes the
expectation operator and Eprop(X) is the proposed error function when a random vector
X is presented to an MLP as an input pattern. Also, Qk(x) is the posterior probability
Pr[X originates from class k|X = x].

Table 1: Summary of the proposed EBP algorithm for imbalanced data

1. Initialize an MLP with random weights
2. Present a training pattern to MLP

3. Calculate h
(p)
j and y

(p)
k as in Eq. (1)-(2)

4. Calculate δ
(p)
k according to Eq. (6)

5. Regulate δ
(p)
k according to Eq. (7)

6. Update vkj and wji as the EBP algorithm
7. Return to step 2
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Figure 2: The geometric mean of class accuracies for “Ann-thyroid13”.

Table 2: Data set distribution for training

Data Set Minority Class Majority Class Total Patterns Minority Ratio
Ann-thyroid13 93 3,488 3,581 2.60 %
Ann-thyroid23 191 3,488 3,679 5.19 %
Mammography 260 10,923 11,183 2.32 %

Table 3: Data set distribution for test

Data Set Minority Class Majority Class Total Patterns Minority Ratio
Ann-thyroid13 73 3,178 3,251 2.25 %
Ann-thyroid23 177 3,178 3,355 5.28 %
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Figure 3: The geometric mean of class accuracies for “Ann-thyroid23”.
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Figure 4: The geometric mean of class accuracies for “Mammography”.
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Table 4: Test results for (a)“Ann-thyroid13”, (b)“Ann-thyroid23”, and
(c)“Mammography”. A1 denotes the accuracy for the minority class, A2 is for the
majority class, and G-Mean is the geometric mean of A1 and A2.

(a)
Training Method Conv. EBP Two-Phase Thres. Mov. Prop.

Mean 86.8 % 91.2 % 91.8 % 95.0 %
A1 Min. 86.3 % 89.0 % 91.8 % 94.5 %

Max. 89.0 % 94.5 % 91.8 % 95.9 %
Mean 99.4 % 98.7 % 99.0 % 98.8 %

A2 Min. 99.3 % 95.7 % 99.0 % 98.8 %
Max. 99.4 % 99.4 % 99.2 % 98.9 %
Mean 92.9 % 94.8 % 95.3 % 96.9 %

G-Mean Min. 92.6 % 94.0 % 95.3 % 96.6 %
Max. 94.0 % 95.8 % 95.4 % 97.4 %

(b)
Training Method Conv. EBP Two-Phase Thres. Mov. Prop.

Mean 90.3 % 89.8 % 97.0 % 97.7 %
A1 Min. 88.7 % 87.6 % 94.9 % 96.6 %

Max. 92.7 % 93.2 % 98.3 % 98.3 %
Mean 98.0 % 97.1 % 96.0 % 96.3 %

A2 Min. 96.8 % 95.2 % 94.7 % 96.0 %
Max. 98.5 % 98.8 % 97.5 % 96.8 %
Mean 94.1 % 93.4 % 96.5 % 97.0 %

G-Mean Min. 93.2 % 92.7 % 95.9 % 96.7 %
Max. 95.2 % 94.2 % 96.9 % 97.3 %

(c)
Training Method Conv. EBP Two-Phase Thres. Mov. Prop.

Mean 60.4 % 85.3 % 85.0 % 87.8 %
A1 Min. 49.1 % 75.5 % 77.4 % 79.2 %

Max. 69.4 % 93.3 % 91.8 % 95.6 %
Mean 99.6 % 95.9 % 96.1 % 94.1 %

A2 Min. 99.4 % 93.5 % 93.4 % 92.7 %
Max. 99.8 % 97.6 % 97.6 % 95.7 %
Mean 77.4 % 90.4 % 90.3 % 90.9 %

G-Mean Min. 69.9 % 85.7 % 86.3 % 86.6 %
Max. 83.1 % 94.3 % 94.4 % 95.1 %
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