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a b s t r a c t

In order to overcome a limited performance of a conventional monaural model, this letter proposes a

binaural blind dereverberation model. Its learning rule is derived using a blind least-squares measure by

exploiting higher-order characteristics of output components. In order to prevent an unwanted

whitening of speech signal, we adopt a semi-blind approach by employing a pre-determined whitening

speech quality than those of the monaural model. The applicability of the model to the real environment

is also shown by applying to real-recorded data. Especially, the proposed model attains much improved

word error rates from 13:9� 5:7ð%Þ to 4:1� 3:5ð%Þ across 13 speakers for testing in the real speech

recognition experiments.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Speech signals convolved with room reverberations become
corrupted and the performance of an automatic speech recogni-
tion (ASR) system is subsequently degraded [3]. In order to restore
clean speech signal, blind dereverberation (BD) methods have
been proposed by estimating an inverse or dereverberation filter
of the unknown room reverberations from a recorded signal
[9,4–6,8,13].

Fig. 1a shows a conventional single-channel (monaural) model
based on an assumption that a speech signal S has a non-Gaussian
probability density function (PDF). In order to prevent decorrela-
tion among speech samples (i.e. whitening), a reverberated signal
X is pre-processed with a pre-trained whitening filter Wt and a
whitened signal Xt is used to estimate a dereverberation filter W

(i.e. semi-blind dereverberation or sBD). By exploiting higher-
order characteristics of a dereverberated signal Ut , the derever-
beration filter W is updated based on a gradient term defined
as [9,4,8]

DW ¼
1

W�
� STFTðjðutÞÞ � X

�
t

� �
�W� �W, (1)
ll rights reserved.
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where a function STFT denotes a short-time fast Fourier transform
(STFT), � is an element-wise multiplication between two vectors, �

is a complex conjugate operation, and jðutÞ 9� q ln pðutÞ=qut is a
minus of the Fisher score function [7] (pðutÞ: a PDF of ut). Then, the
dereverberation filter is iteratively updated as follows:

Wnew ¼Wþ ZDW, (2)

where a positive scalar Z ð51Þ is a learning rate.
However, due to non-minimum phase characteristics of

room reverberation, an exact inverse filter cannot be achieved
from the single-channel model and an additional channel is
required [6,17]. In this context, this letter proposes a dual-channel
(binaural) sBD model shown in Fig. 1b. In a reverberation block,
a clean speech signal S is convolved with two reverberation
channels Hi (i 2 f1;2g). The resulting convolved signals are further
corrupted with additive white Gaussian noises (AWGN) Ni that
model measurement noises during recording processes. In a
concurrent dereverberation block, we may assume that there are
two independent sources (i.e. S and Ni) and, subsequently, the
binaural sBD model can be adopted from a blind source separation
(BSS) model. Using a blind least-squares (BLS) as a measure of
independence among output components [9,2,1], an iterative
learning rule of the corresponding model is derived by minimizing
the BLS and thus by maximizing independence across and
within output components. Upon evaluation using simulated
reverberations, the proposed binaural sBD model is applied to a
real-recorded data.

www.sciencedirect.com/science/journal/neucom
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Fig. 1. Block diagrams of semi-blind dereverberation (sBD) models: (a) a

conventional monaural (single-channel) and (b) proposed binaural (dual-channel)

models.
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2. A learning algorithm of the proposed binaural model

Using a STFT, the whitened reverberated signal Xt;i in Fig. 1b is
expressed as

Xt;i ¼Wt � Xi ¼Wt � ðHi �W
�1
t � St þ NiÞ ¼ Hi � St þWt � Ni, (3)

where i (2 f1;2g) is an index of microphone. Therefore, Hi is the
only convolution channel in Xt;i and Wt � Ni is a filtered Gaussian
noise. By applying dereverberation filters,

Ut;j ¼
X2

i¼1

ðWji � Xt;iÞ, (4)

where j (2 f1; . . . ;Mg) is an index of output and Wji is a STFT
of an Lth-order finite impulse response (FIR) filter wji from
the ith microphone to the jth output component. Because of an
unwanted problem of circular convolution, the first L samples of
ut;j ð¼ STFT�1

ðUt;jÞÞ should be discarded.
As a measure of independence among output components,

we adopt a BLS cost function defined as [9,2,1]

J ¼
XM
j¼1

E½jUt;j � STFTðgðut;jÞÞj
2� (5)

in the frequency domain, where gð�Þ is a nonlinear function related
with a PDF of source signal [1,14]. In order to minimize Eq. (5)
based on a stochastic gradient descent method [16], an iterative
learning rule can be derived by taking the derivative of Eq. (5)
with respect to W9½Wji�M�2. Additionally, a natural gradient
scheme is applied to improve convergence property [4,8] and an
error term (ut;j � gðut;jÞ) is substituted as jðut;jÞ for asymptotical
efficiency [1,14]. Finally, a learning algorithm for the proposed
binaural sBD model can be derived as

DW ¼ �
qJ
qW�
�WH

�W 	 �

STFTðjðut;1ÞÞ

..

.

STFTðjðut;MÞÞ

2
664

3
775 �

Ut;1

..

.

Ut;M

2
664

3
775

H

�W, (6)

where H is a Hermitian transpose.
To avoid a trivial zero solution of Eq. (6), W is normalized

to unit norm on every iteration. Therefore, a newly updated
term Wnew can be represented as

Wnew ¼
Wþ ZDW
kWþ ZDWk

9WþDW
0

, (7)

where k � k denotes an L2-norm and Z is a learning rate (Z51).
By substituting Eq. (6) into DW of Eq. (7),

DW
0

¼
Z

1� mZ
m

1 0

. .
.

0 1

2
6664

3
7775
ðM�MÞ

�

STFTðjðut;1ÞÞ

..

.

STFTðjðut;MÞÞ

2
6664

3
7775
ðM�1Þ

8>>>><
>>>>:

�

Ut;1

..

.

Ut;M

2
6664

3
7775

H

ðM�1Þ

9>>>>=
>>>>;
�WðM�2Þ, (8)

where 0 is a zero vector, 1 is a vector whose elements are all 1’s,
m91� kWþ ZDWk=Z, and a dimension of each matrix is noted as
a subscript inside a parenthesis. Note that due to 2N-point STFT,
each element in Eq. (8) is a 2N dimensional vector. Since each
element of DW

0

goes to 0 at the convergence,

STFTðjðut;jÞÞ � U
�
t;j ¼ m1 and STFTðjðut;jÞÞ � U

�
t;k ¼ 0 ðjakÞ, (9)

where j; k 2 f1; . . . ;Mg.
According to a higher-order decorrelation property of Eq. (9),

each output would be dereverberated based on the first constraint
(i.e. statistically independent sequence) and the resulting M

outputs would be independent of each other based on the second
constraint. Therefore, we can anticipate that AWGN may be
extracted by one of the outputs and speech signals may be
decomposed into the remaining outputs. Consequently, we tested
the binaural model for two different output numbers ðM 2 f2;3gÞ.
Note that, due to spectral dependency of adjacent speech samples,
the resulting speech components may be separated from
frequency-dependent components [10].

An overall procedure for iterative training of the dereverbera-
tion filters wji can be summarized as follows:
(i)
 Transform the time domain Lth-order filter wji and K samples
of xt;i into the frequency domain representations of Wji and
Xt;i using a 2N-point STFT, respectively. Here, K4L and N is
the nearest integer such that 2N

XK. P

(ii)
 Calculate the output components of Ut;jð¼

2
i¼1 ðWji � Xt;iÞÞ

and ut;j ð¼ STFT�1
ðUt;jÞÞ. Note that the first L samples of ut;j

should be discarded due to an unwanted problem of a circular
convolution.
(iii)
 Update Wji using Eq. (7) and obtain wji by taking the first
ðLþ 1Þ real values of STFT�1

ðWjiÞ.

(iv)
 Iterate (i)–(iii) until a pre-defined stopping criterion is

reached.
The proposed dereverberation algorithm of Eq. (6) was derived
using the BLS cost function. As some of the machine learning
problems, the adopted cost function may be non-convex over the
region of operating parameters or may have multiple local
minima [11]. Subsequently, it is complicated to find the exact
optimal solution of the problem which can be derived from a
convex cost function. Instead, without a complication of a global
optimization process [12], the problem can be solved by applying
adaptive approaches such as the adopted stochastic gradient
descent method which finds a minimum point based on a
negative gradient of the cost function [16]. Note that the
convergence to the global minimum may not be guaranteed due
to the existence of multiple local minima and even saddle points,
and thus an additional work on the convergence analysis is
warranted.
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Fig. 2. Temporal waveforms and magnitude spectra of four employed simulated reverberation channels (5� 4� 3 m3 sized room; one speaker at (2.0 m, 2.0 m, 1.0 m); and

two pairs of microphones at m1:(1.9 m, 1.5 m, 1.0 m) & m2:(2.1 m, 1.5 m, 1.0 m) and m3:(2.0 m, 1.0 m, 1.0 m) & m4:(2.5 m, 1.0 m, 1.0 m); hi corresponds to a reverberation

channel measured at mi).
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3. Evaluation using simulated reverberations

In the TIMIT speech corpus,2 data from a randomly selected
speaker ‘mjwt0’ (
30 s; 16 kHz sampling) were used to train both
whitening and dereverberation filters. That is a speaker depen-
dent condition. A FIR whitening filter (1024-tap, 64 ms; 512-tap
delay), pre-trained using the monaural algorithm presented in
Eqs. (1) and (2), was applied to both monaural and binaural
models. Four reverberations shown in Fig. 2 were taken using
a commercial software ‘Room Impulse Response v2.5’3 which
employs a time-domain image expansion method. A reverberated
speech signal was further corrupted with AWGN of 20, 15, and
10 dB signal-to-noise ratio (SNR) levels.

In order to measure speech quality, perceptual evaluation of
speech quality (PESQ) mean opinion score (MOS)4 was employed
(ranges: 125; 1-bad, 2-poor, 3-fair, 4-good, and 5-excellent). In
Fig. 1b 4096-tap (256 ms) FIR filters with 2048-tap delay were
used as wji. As a semi-batch learning scheme, wji was updated
every 8192-sample of ut;j which was obtained from 12 287-sample
ð¼ 4096þ 8192� 1Þ of xt;i. A 16 384-point STFT was used, and in
each sweep, Z was adaptively changed so that an averaged energy
of ðZDW=WÞ was fixed at 10�4.

Fig. 3 shows total channel responses of considered models after
the convergence of PESQ MOS (condition: h3 and h4 with 15 dB
SNR). For the binaural model, the total channel response at the jth
output was defined as

ajðtÞ9h3ðtÞ � wj1ðtÞ þ h4ðtÞ � wj2ðtÞ & Ajðf Þ9STFTðajðtÞÞ. (10)

Comparing h4 in Fig. 2 with aðtÞ in Fig. 3a, although a large
amount of distortions from reverberation channel was removed
by the monaural model, ‘zeros’ still remained in Aðf Þ. From the
results of the binaural model ðM ¼ 2Þ in Fig. 3b, speech signal and
Gaussian noise were separated into the 1st and 2nd components,
respectively. Note that from the A1ðf Þ within 024 kHz, the
remaining zeros of the monaural model were success-
fully removed. Similarly, as shown in Fig. 3c, the proposed model
ðM ¼ 3Þ decomposed xt;i into noise component (the 2nd) and two
speech components (the 1st and 3rd). Interestingly, we can see
that a1ðtÞ and a3ðtÞ showed low- and high-pass filter characte-
ristics, respectively (
4 kHz cut-off). This ‘frequency division’
2 http://www.ldc.upenn.edu/Catalog/readme_files/timit.readme.html
3 http://www.dspalgorithms.com/room/room25.html
4 http://www.pesq.org
occurred due to the strong temporal and spectral dependencies
of adjacent speech samples as described in Section 2. Again,
compared to the monaural model, the proposed model ðM ¼ 3Þ
showed much improved total channel response within 024 kHz
without spectral zeros (also slightly better than the results from
M ¼ 2).

For each sweep, PESQ MOS of a dereverberated speech was
measured within 024 kHz because most of phonetic features for
ASR are extracted within this frequency range [15]. Accordingly,
the 16 kHz data were down-sampled to 8 kHz for the monaural
model. Since the reverberation channels were also reduced from
1024- to 512-tap from the down-sampling, a 2048-tap FIR filter
(1024-tap delay) was used as w for the monaural model. So, the
ratio between reverberation and dereverberation filters was same
in the monaural model (512-tap h vs. 2048-tap w) and binaural
model (1024-tap h vs. 4096-tap wji).

Fig. 4 shows the learning curves of PESQ MOS values, which
were averaged across reverberation channels. Note that the
proposed binaural model with M ¼ 3 showed better PESQ MOS
values compared to the proposed binaural model with M ¼ 2 as
well as the conventional monaural model. This result is consistent
with the total channel responses shown in Fig. 3. Additionally, a
dominant improvement of the proposed model for a low SNR
indicates that our model can also reduce additive noises in the
dereverberated speech signals (i.e. compare monaural/binaural
ðM ¼ 2Þ models for 20 and 10 dB SNRs in Fig. 4).
4. Results of real-recorded data

We tested the proposed binaural model with M ¼ 3 on a real
recording environment in an office room sized 4:5� 4:5� 2:5 m3.
A 75 Korean phonetically balanced isolated-word (PBW) database
(
60 s per speaker) was played by a normal PC speaker and was
recorded using two condenser microphones (ATR 35 s; Audio-
technica) and a Sound Blaster PCI128 card (16 kHz sampling).
A distance between the speaker and one of the microphones
was 100 cm (distance between two microphones: 20 cm). An
FIR whitening filter (1024-tap) was pre-trained using 35 speakers’
clean speech signals. The speech data of the remaining 13 speakers
were used for testing the proposed model (i.e. speaker indepen-
dent condition).

The dereverberation filters were iteratively updated following
the training process described in Section 2. FIR filters (4096-tap)
were used as wji. We also tested FIR dereverberation filters that

http://www.ldc.upenn.edu/Catalog/readme_files/timit.readme.html
http://www.dspalgorithms.com/room/room25.html
http://www.pesq.org
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Fig. 4. Learning curves of PESQ MOS for the simulated reverberations (in a figure legend, ‘M ¼ 2’ and ‘M ¼ 3’ correspond to binaural models with two and three outputs,

respectively).

Fig. 3. Total convolution channel responses after applying the: (a) monaural model, (b) binaural (M ¼ 2) model with two outputs and (c) binaural (M ¼ 3) model with three

outputs (experimental condition: h3 & h4 with 15 dB SNR of AWGN).
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have more taps (8192- and 16384-tap) and compared to the
results of 4096-tap dereverberation filters. Updating condition of
wji and adaptation of Z are the same with the experiments using
the simulated reverberations in Section 3. The iterative learning
continued until 2000 sweeps for all three cases and the kurtosis
values employed as a measure of non-Gaussianity of the output
components were stabilized after the learning (i.e. assumed as a
convergence).

Fig. 5 shows examples of waveforms and spectrograms of a
clean speech, two recorded ones, and three output components.
The resulting u1, u2, and u3 correspond to a dereverberated high-
frequency speech signal, separated measurement noise, and
dereverberated low-frequency speech signal, respectively. From
both waveforms and spectrograms, we can observe that the room
reverberations were successfully reduced (i.e. compare s, x1, x2,
and u3).

Regarding the performance measure, it is worth to note that
PESQ MOS is mainly designed for use with digital (not acoustic)
interfaces to the systems under test. In this context, the PESQ MOS
measure may not be adequate in our experimental setup in which
only the effects of acoustic reverberations along with inherent
additive noises are involved. Therefore, as more reasonable
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Fig. 5. An example of waveforms and spectrograms for real-recorded data of speaker #12 before and after applying the proposed binaural sBD model (4096-tap wji) with

M ¼ 3 (compare (a)–(c) and (f) to see the improvement of a speech quality).

Table 1
The word error rates (WERs) and PESQ MOS values for 13 speakers for testing as well as the averaged values with standard deviations across the speakers

Speaker Word error rate (%) PESQ MOS

Index Clean Record 4096 8192 16 384 Record 4096 8192 16 384

#01 0.0 10.7 4.0 1.3 2.7 2.65 2.96 3.07 3.06

#02 0.0 13.3 5.3 1.3 1.3 2.65 2.86 3.18 3.15

#03 1.3 23.3 6.7 4.0 8.0 2.68 2.96 3.24 3.15

#04 1.3 19.3 8.0 4.0 2.7 2.75 3.12 3.27 3.13

#05 1.3 14.7 6.7 4.0 4.0 2.67 3.02 3.17 3.13

#06 1.3 12.0 5.3 2.7 1.3 2.61 2.66 3.19 3.07

#07 0.0 12.0 9.3 4.0 5.3 2.54 2.67 3.06 2.97

#08 1.3 11.3 12.0 2.7 5.3 2.71 2.76 3.16 3.13

#09 0.0 7.3 2.7 0.0 0.0 2.74 3.02 3.31 3.27

#10 0.0 6.7 21.3 10.7 10.7 2.62 2.51 2.88 2.86

#11 2.7 24.0 24.0 12.0 10.7 2.61 2.58 3.03 2.87

#12 2.7 18.0 13.3 5.3 6.7 2.71 3.00 3.12 3.04

#13 0.0 8.7 6.7 1.3 1.3 2.78 2.96 3.21 3.19

Total 0:9� 1:0 13:9� 5:7 9:6� 6:5 4:1� 3:5 4:6� 3:6 2:7� 0:1 2:9� 0:2 3:2� 0:1 3:1� 0:1

Clean: original clean speech; Record: recorded speech within two microphones (averaged results); 4096, 8192, and 16 384: dereverberated speech using the corresponding

number of taps for the dereverberation filters.
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assessment measure, we evaluated the performance from an ASR
experiment and PESQ MOS might be considered as a secondary
means of a quality assessment.

A continuous density Hidden Markov Model (HMM) available
in Hidden Markov Toolkit (HTK) 3.15 was used as a classifier. Using
HTK, 39th order mel-frequency cepstral coefficients (MFCCs)
including delta and acceleration coefficients (i.e. feature vector
or FV) were extracted from every 25 ms of speech segments and
the time difference between adjacent segments was 10 ms (i.e.
temporal resolution of FVs). The resulting FVs of MFCCs from each
word were used as an input of the HMM classifier (18-state left-
right model with no skip). The FVs corresponding to clean isolated
words (2625) from 35 speakers (the same data used for the
training of whitening filter) were employed to train the model
5 http://htk.eng.cam.ac.uk/
parameters of the HMM. The FVs corresponding to 75 isolated
words from each of the remaining 13 speakers were then
classified using the trained HMM. Error rates related to the
classification of words (i.e. word error rates or WERs)
were separately obtained for the clean, recorded (without
dereverberation), and dereverberated speech data.

The results of WERs for each of 13 speakers’ data are
summarized in Table 1 along with the PESQ MOS values. Note
that PESQ MOS for clean speech is 4.5. Overall, after using 8192- or
16384-tap of dereverberation filters, performances were drasti-
cally improved for virtually all speakers except only one speaker
(#10) who showed degraded WER (10.7% for 8192-tap) compared
to that of the recorded data (6.7%). From the retrospective analysis
on this speaker’s results, we found that the dereverberation filters
were over-trained whereby the WER and PESQ MOS after 500
sweeps were 5.3% and 3.01, respectively. The averaged perfor-
mance of both the WER and PESQ MOS across all subjects clearly

http://htk.eng.cam.ac.uk/
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reflects the efficacy of the proposed method and both mea-
sures show maximum enhancement across all speakers in
the case of 8192-tap (i.e. WER: from 13.9% to 4.1%; PESQ MOS:
from 2.7 to 3.2).

Fig. 6 shows the relative reduction of WER across all speakers,
which is defined as

Relative WER reduction (% ) ¼
WERrecord �WERdereverb:

WERrecord
� 100.

(11)

Note that the relative WER reduction is saturated after using the
8192-tap filters (77.5% of median) suggesting that the inverse of
the room reverberations was successfully achieved using this
length of filters rather than 4096-tap of filters (54.4% of median).
The slight degradation corresponding to the 16 384-tap filters
(72.8% of median) indicates that the given reverberated speech
data ð
60 sÞ may not be long enough to estimate the 16 384 taps
ð
1 sÞ and this might cause under-training of the filters. Overall,
these experimental results from the real recorded data suggest
that the proposed model is applicable to the real room recording
environment.
5. Conclusions

In order to improve a dereverberation performance
under noisy environment, this letter proposed the binaural sBD
model adopted from a BSS model. Its learning algorithm
was derived from the BLS cost function in the frequency
domain and experimental results were obtained from the real
recording experiment as well as the simulated conditions.
For various simulated conditions, the proposed model resulted
better speech quality than the conventional monaural model.
Also, the results of the real recorded data may indicate the
feasibility of the proposed model as a pre-processing stage for
real applications.
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