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Abstract

We present a new algorithm to perform blind signal separation (BSS), which takes a trade-off between the ordinary gradient infomax

algorithm and the natural gradient infomax algorithm. Analyzing the algorithm, we show that desired equilibrium points are locally

stable by choosing appropriate score functions and step sizes. The algorithm provides better performance than the ordinary gradient

algorithm, and it is free from approximation error and the small-step-size restriction of the natural gradient algorithm. In simulations on

convolved mixtures, the algorithm provides much better performance than the other algorithms while requiring less computation.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Independent component analysis; Blind signal separation; Entropy maximization; Gradient learning
1. Introduction

The blind signal separation (BSS) problem is to find a
transform that recovers source signals from their mixtures
without knowing how the sources are mixed [13,19].
Although the term ‘blind’ means that no prior information
is available, many BSS algorithms rely on statistical
independence of source signals [5,8]. Only with this
statistical-independent assumption, BSS shows good per-
formance in many applications and it has received
extensive attention in signal and speech processing,
machine learning, and neuroscience communities.

Although many researchers have proposed algorithms to
perform BSS, a large number of these are batch-type with
prewhitened signals of instantaneous mixtures. In many
practical applications, however, all mixing data are not
given in advance, and outputs have to be immediately
provided for each input sample. In addition, batch-type
algorithms cannot be used for non-stationary environ-
ments. Furthermore, convolved mixtures of natural signals
which have correlation among time samples are often
addressed. For such practical applications, it is necessary
e front matter r 2006 Elsevier B.V. All rights reserved.

ucom.2006.03.009

ing author. Tel.: +8242 869 5351; fax: +82 42 869 8490.

ess: hmpark@kaist.ac.kr (H.-M. Park).
for BSS algorithms to have separation capability of
convolved mixtures with on-line adaptation even without
prewhitening. Unfortunately, the majority of algorithms
cannot handle these applications because they have been
developed to separate instantaneous mixtures or whitened
signals with batch-type processing [6,15,16,25,30].
As an approach to BSS without these difficulties, an

ordinary gradient algorithm for entropy maximization is
notable for its simple and biologically plausible formula-
tion [4,29]. However, the parameter space is not orthogonal
in the Riemannian manifold, which is usually encountered
in practical problems. In this case, the ordinary gradient
does not indicate the most efficient direction for a desired
solution, thereby causing a slow convergence. As a much
more efficient strategy, Amari et al. proposed the natural
gradient, which can consider the relationship between the
Riemannian manifold and the Euclidean manifold [1–3]. In
addition, Cardoso and Laheld independently proposed the
same, which they termed the relative gradient, and proved
that the gradient has the ‘equivariance property’ [7].
The ordinary gradient algorithm has a slow convergence

property in many practical problems and involves matrix
inversion which is computationally intensive. On the other
hand, the natural gradient algorithm is quite efficient and does
not involve the matrix inversion. However, it still requires
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additional computation such as convolution for convolved
mixtures and matrix multiplication for instantaneous mix-
tures. Moreover, the natural gradient algorithm has a serious
problem in dealing with convolved mixtures. The exact form
of the natural gradient algorithm for BSS of convolved
mixtures involves non-causal terms and requires very intensive
computation. To remove the non-causal terms and reduce the
computational complexity, it is necessary to approximate the
algorithm on the assumption that the updating amounts of
filter coefficients are very small [3,8]. To fulfill the assumption,
the step size should be very small, which results in slow
convergence. In addition, the approximation may induce
errors in updating adaptive filter coefficients.

In an attempt to obtain better performance than the
ordinary gradient algorithm and overcome the disadvan-
tages of the natural gradient algorithm, we present a new
modification of the algorithms. In the modification, the
algorithm provides a compromise between the ordinary
gradient algorithm and the natural gradient algorithm. The
algorithm maintains spatial and temporal independence,
and requires less computation than the other algorithms.
Simulation results demonstrate the efficiency of the
proposed algorithm. For theoretical support, local stability
on desired solutions of the algorithm is proven.

2. Conventional algorithms for BSS

The goal of BSS is to separate source signals from
linear mixtures of unknown independent source signals
[13,19,20]. Let us consider a set of unknown sources,
sðnÞ ¼ ½s1ðnÞ; s2ðnÞ; . . . ; sM ðnÞ�

T, such that the components
fsiðnÞ; i ¼ 1; 2; . . . ;Mg are zero-mean and mutually inde-
pendent. Assume that a set of observations, xðnÞ ¼

½x1ðnÞ;x2ðnÞ; . . . ;xMðnÞ�
T, is obtained as a linear combina-

tion of the unknown sources. Then, the observations xðnÞ
can be expressed as

xðnÞ ¼ AsðnÞ, (2.1)

where A is an unknown full rank mixing matrix. The task is
to find an unmixing matrix WðnÞ such that estimated
signals uðnÞ are the original sources up to permutation and
scaling, where

uðnÞ ¼WðnÞxðnÞ. (2.2)

Bell and Sejnowski proposed training the unmixing matrix
WðnÞ by maximizing the entropy of y ¼ gðuÞ, where g is a
nonlinear function approximating the cumulative density
function (cdf) of the sources [4]. The ordinary gradient for
maximizing the entropy leads to the following learning rule
called as the infomax algorithm:

DWðnÞ / ½WTðnÞ��1 � jðuðnÞÞxTðnÞ,

jðuðnÞÞ ¼ �
qp1ðu1ðnÞÞ=qu1ðnÞ

p1ðu1ðnÞÞ
; . . . ;

�
�

qpMðuM ðnÞÞ=quMðnÞ

pM ðuMðnÞÞ

�T
, ð2:3Þ
where jð�Þ is called a score function and piðuiðnÞÞ denotes
the probability density function (pdf) of uiðnÞ.
A much more efficient way to learn the unmixing matrix

is to follow the natural gradient [2,7,9]. For instantaneous
mixtures, the natural gradient rescales the ordinary
gradient by post-multiplying it with WTðnÞWðnÞ, giving

DWðnÞ / ½I� jðuðnÞÞuTðnÞ�WðnÞ. (2.4)

It is known that the natural gradient finds the most efficient
direction for updating the unmixing matrix when the
parameter space belongs to the Riemannian manifold.
Moreover, the gradient has the equivariance property
such that its convergence property is independent of the
mixing characteristics [7]. Because the natural gradient
algorithm does not involve computationally intensive
matrix inversion, it requires less computation than the
ordinary gradient algorithm.

3. A modified infomax algorithm

Let us consider a ‘modified’ infomax algorithm as
follows:

DWðnÞ / I� jðuðnÞÞuTðnÞ. (3.1)

Comparing Eq. (3.1) with Eqs. (2.3) and (2.4), we can easily
see that the algorithm takes a compromise between the
ordinary gradient algorithm and the natural gradient
algorithm.
Here, the dynamic property of the algorithm is investi-

gated with a cost function JðWÞ, which derives the
conventional infomax algorithms

JðWÞ ¼ � log j detðWÞj �
XM
i¼1

logðpiðuiÞÞ. (3.2)

In an attempt to check if the cost function is a Lyapunov
function, which rigorously proves the convergence of the
corresponding algorithm, we derive

dJðWÞ

dn
¼
XM
i¼1

XM
j¼1

qJ

qwij

dwij

dn
. (3.3)

Since qJ=qW ¼ �W�T þ jðuÞxT, the modified infomax
algorithm can be represented as

dW

dn
¼ Z½I� jðuÞuT� ¼ �Z

qJ

qW
WT, (3.4)

where Z is positive, and Eq. (3.3) is

dJðWÞ

dn
¼ � Z

XM
i¼1

XM
j¼1

qJ

qwij

XM
k¼1

qJ

qwik

wjk

¼ � Z
XM
i¼1

qTi Wqi, ð3:5Þ

where qi denotes the ith column vector of qJ=qW.
Therefore, when W is positive definite, dJðWÞ=dn is not
positive, which leads that the cost function JðWÞ is a
Lyapunov function of the modified infomax algorithm.
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In this case, dJðWÞ=dn ¼ 0 is achieved if and only if qi ¼ 0
for all i, which is equivalent to the condition that
dW=dn ¼ 0.

Equilibrium points of the algorithm can be expressed as

E½DWðnÞ� / I� E½jðuðnÞÞuTðnÞ� ¼ 0 (3.6)

which provide independence for the estimated signals fuig.
Note that the algorithm has the same equilibrium points as
the ordinary gradient algorithm and the natural gradient
algorithm. Moreover, the algorithm does not involve
matrix inversion as well as matrix multiplication with W.
In particular, it may be useful for hardware implementa-
tion owing to its simple form.

From the algorithm, removing the score function jð�Þ
gives a second-order blind decorrelation learning rule [11].
However, it is worth noting that the modified infomax
algorithm can obtain independent signals from mixtures
using higher-order statistics instead of decorrelated signals.
Furthermore, a more general learning rule has been
proposed by applying a nonlinear function to uT [10]. In
this paper, however, we do not use the nonlinear function
in order to compare the algorithm with the conventional
algorithms directly. Also, the modified infomax algorithm
is extended to deal with convolved mixtures and the
stability of the equilibrium points of the algorithm is
analyzed as shown in the following sections.

4. Extension to convolved mixtures

Now, let us extend these algorithms to BSS of convolved
mixtures. If the mixing of source signals involves convolu-
tion and time-delays, the observation vector xðnÞ can be
expressed as

xðnÞ ¼
XK�1
k¼0

Aksðn� kÞ, (4.1)

where Ak denotes a matrix composed of mixing filter
coefficients. Let us consider a feedforward network to
separate signals from the convolved mixtures as

uðnÞ ¼
XK�1
k¼0

WkðnÞxðn� kÞ, (4.2)

where adaptive filter matrices fWkðnÞ; k ¼ 0; 1; . . . ;K � 1g
make an output vector uðnÞ reproduce the source vector
sðnÞ.

Torkkola derived the ordinary gradient algorithm of
entropy maximization for convolved mixtures as [29]

DWkðnÞ / ðW
T
0 ðnÞÞ

�1dk � jðuðnÞÞxTðn� kÞ. (4.3)

On the other hand, the natural gradient algorithm is given
by [3,8]

DWkðnÞ /WkðnÞ � jðuðnÞÞrTk ðnÞ, (4.4)

where rkðnÞ ¼
PK�1

l¼0 WT
l ðnÞuðn� k þ lÞ. Unfortunately, the

natural gradient algorithm shows that the update of WkðnÞ
depends on future outputs uðn� k þ lÞ; k � lo0; through
rkðnÞ. In addition, it involves very intensive computation to
compute all rkðnÞ; k ¼ 0; . . . ;K � 1; at each time step.
Practically, the algorithm is approximated by introducing a
K � 1 sample delay to remove the non-causal terms and by
reusing past results assuming that WkðnÞ �Wkðn� 1Þ �
� � � �Wkðn� 2K þ 2Þ and rkðnÞ � r0ðn� kÞ. With this
approximation, the algorithm becomes

DWkðnÞ /WkðnÞ � jðuðn� K þ 1ÞÞrTðn� kÞ, (4.5)

where rðnÞ ¼
PK�1

l¼0 WT
K�1�lðnÞuðn� lÞ. With the assump-

tion WkðnÞ � � � � �Wkðn� 2K þ 2Þ, the algorithm has to
use a very small step size, especially for a large number of
adaptive filter coefficients, in order to converge on a proper
solution. Therefore, this may result in performance
degradation by the approximation error and slow conver-
gence by the small-step-size restriction.
To deal with convolved mixtures, extending the modified

infomax algorithm in Eq. (3.1) gives

DWkðnÞ / Idk � jðuðnÞÞuTðn� kÞ. (4.6)

Since equilibrium points of the algorithm satisfy

E½DWkðnÞ� / Idk � E½jðuðnÞÞuTðn� kÞ� ¼ 0, (4.7)

the algorithm has the same equilibrium points as the
ordinary gradient algorithm and the natural gradient
algorithm. Also, spatial and temporal independence for
the estimated signals is achieved at these points. In
addition, contrary to the natural gradient algorithm, it is
not necessary to use a very small step size or to compute
the additional convolution rðnÞ. In the natural gradient
algorithm, M2K multiplications are approximately re-
quired to compute rðnÞ per time instant for an ðM �MÞ-
dimensional matrix WkðnÞ [3]. Furthermore, it does not
involve matrix inversion such as the zero-delay weight
update of the ordinary gradient algorithm.
The above algorithms have indeterminacy of the estimated

signals up to permutation and arbitrary filtering. Entropy
maximization attempts to make the outputs temporally
whitened, which may degrade outputs in many applications
such as BSS of natural signals. Whitening the estimated
outputs can be avoided by forcing direct filters, W iiðzÞ, to
scaling factors [29]. Here, W iiðzÞ are the filters composed of
diagonal elements of adaptive filter matrices WkðnÞ.

5. Stability analysis

To check the stability of the equilibrium points, we
rewrite Eq. (4.6) with the step size m as

Wkðnþ 1Þ ¼WkðnÞ þ mfIdk � jðuðnÞÞuTðn� kÞg. (5.1)

Without loss of generality, we can assume that uoðnÞ ¼ sðnÞ

because of scale indeterminacy. Here, uoðnÞ denotes uðnÞ in
a separating equilibrium point, in which E½jðsðnÞÞsT

ðn� kÞ� ¼ Idk. If the unmixing matrix is perturbed from
the equilibrium point, WkðnÞ ¼Wo

k þ
eWkðnÞ and uðnÞ ¼

sðnÞ þ euðnÞ, where eWkðnÞ is the error matrix. In addition,
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jðuðnÞÞ can be approximated to the first order as

jðuðnÞÞ � jðsðnÞÞ þDj0 ðnÞeuðnÞ, (5.2)

where the score function jðsðnÞÞ can be represented as

�
qp1ðs1ðnÞÞ=qs1ðnÞ

p1ðs1ðnÞÞ
; . . . ;� qpM ðsM ðnÞÞ=qsM ðnÞ

pM ðsM ðnÞÞ

h iT
, and Dj0 ðnÞ is a

diagonal matrix composed of the derivatives of jiðsiðnÞÞ.
Therefore, the error matrix eWkðnÞ can be approximated

aseWkðnþ 1Þ � eWkðnÞ þ mfIdk � jðsðnÞÞsTðn� kÞ

�Dj0 ðnÞeuðnÞsTðn� kÞ

� jðsðnÞÞeuTðn� kÞg. ð5:3Þ

Since euðnÞ ¼PK�1
k¼0

eWkðnÞ
PK�1

l¼0 Alsðn� k � lÞ and eWkðnÞ ¼

0;Ak ¼ 0;8ko0, the expectation of the zero-delay error
matrix is

E½ eW0ðnþ 1Þ� � E½ eW0ðnÞ�

� mfE½Dj0 ðnÞ eW0ðnÞA0sðnÞs
TðnÞ�

þ E½jðsðnÞÞsTðnÞAT
0
eWT

0 ðnÞ�g, ð5:4Þ

and the expectation of a delay error matrix is

E½ eWkðnþ 1Þ�

� E½ eWkðnÞ� � mE Dj0 ðnÞ
Xk

l¼0

eWk�lðnÞAlsðn� kÞ

"

�sTðn� kÞ

#
8ka0. ð5:5Þ

In Eqs. (5.4) and (5.5), we assume that the source signals
fsi; i ¼ 1; 2; . . . ;Mg are i.i.d., which gives

E½sðnÞsðn� kÞ� ¼ 0 8ka0, ð5:6Þ

E½jðsðnÞÞsðn� kÞ� ¼ 0 8ka0. ð5:7Þ

Assuming that only a diagonal element of W0ðnÞ, wii0ðnÞ, is
perturbed and E½ewii0ðnÞ� is uncorrelated with sðnÞ through
the independence assumption [12], Eq. (5.4) can be written
as

E½ewii0ðnþ 1Þ� � E½ewii0ðnÞ�

� mfE½j0iðsiðnÞÞaii0s2i ðnÞ�

þ E½jiðsiðnÞÞsiðnÞaii0�gE½ewii0ðnÞ�. ð5:8Þ

Here, aii0 denotes the ith diagonal element of the mixing
matrix A0. In case that only a k-delay diagonal element,
wiikðnÞ, is perturbed, Eq. (5.5) is

E½ewiikðnþ 1Þ� � E½ewiikðnÞ� � mE½j0iðsiðnÞÞaii0s
2
i ðn� kÞ�

�E½ewiikðnÞ� 8ka0. ð5:9Þ

In order to converge the diagonal element ewii0ðnÞ andewiikðnÞ to 0 with an appropriate step size m, E½j0iðsiðnÞÞ

aii0s2i ðnÞ� þ E½jiðsiðnÞÞsiðnÞaii0� and E½j0iðsiðnÞÞaii0s
2
i ðn� kÞ�

should be positive, respectively. Note that it can be
achieved by aii040 on the assumption that the score
function jiðsiÞ is odd and increases monotonically.
Repeating the derivation for off-diagonal elements,
perturbation of a zero-delay element wij0ðnÞ and a k-delay
element wijkðnÞ can be described as

E½ewij0ðnþ 1Þ� � E½ewij0ðnÞ� � mE½j0iðsiðnÞÞajj0s
2
j ðnÞ�

�E½ewij0ðnÞ� 8iaj, ð5:10Þ

E½ewijkðnþ 1Þ� � E½ewijkðnÞ� � mE½j0iðsiðnÞÞajj0s2j ðn� kÞ�

�E½ewijkðnÞ� 8iaj, ð5:11Þ

respectively. In this case, the perturbation of the off-
diagonal elements can be removed by ajj040.
Therefore, the common constraint is that zero-delay

diagonal elements of the mixing filter coefficients should be
positive. However, the mixing filters are convolved with the
source signal sðnÞ to provide the observations xðnÞ. By
changing the signs of the source signals if needed, we can
always generate the same observations with a mixing
system that consists of positive zero-delay diagonal
elements because of scale indeterminacy. Therefore, this
constraint does not limit usefulness of the proposed
algorithm in real-world applications.
Local stability for instantaneous mixtures can be

analyzed in the same way. For two instantaneous mixtures
mixed from two Laplace-distributed source signals, we can
prove local stability in a more straightforward way, as
shown in the Appendix.
6. Experimental results

6.1. Simulations on instantaneous mixtures

To compare the modified infomax algorithm with others,
two Laplace-distributed source signals have been generated
and mixed with randomly generated 2� 2 mixing matrices.
Here, the 2000 mixing matrices are sorted according to the
condition number which indicates closeness to a singular
matrix by the ratio of the largest singular value to the
smallest, and the results are shown in Fig. 1(a). Each source
signal consisted of 160,000 i.i.d. samples. Since the sources
were Laplace-distributed signals, sgnð�Þ was used as the
score function jð�Þ. As a performance measure of the
algorithms, we used the performance index PI, which was
defined by [2]

PI ¼
XM
i¼1

XM
j¼1

jtijj

maxkjtikj
� 1

 !
þ
XM
j¼1

XM
i¼1

jtijj

maxkjtkjj
� 1

 !
,

(6.1)

where tij is the ði; jÞth element of the overall matrix
T ¼WA. Figs. 1(b)–(e) show the performance indices of
several algorithms. To compare the performance under
various mixing conditions for a fixed number of data
samples, we display the performance indices after one
sweep training of the unmixing matrix. Successful separa-
tion rates with the criterion ‘‘PIo0:1’’ are also displayed in
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Fig. 1. Performance indices of the BSS algorithms for instantaneous mixtures from two Laplace-distributed source signals: (a) codition number of mixing

matrix, (b) ordinary gradient algorithm, (c) natural gradient algorithm, (d) modified infomax algorithm, (e) Dwij / �sgnðuiÞuj ; iaj.

Table 1

Successful separation rates for instantaneous mixtures (criterion: perfor-

mance index o0:1)

Ordinary

gradient

Natural

gradient

Modified

infomax

Dwij / �sgnðuiÞuj ; iaj

81.9% 100.0% 96.5% 80.5%
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Table 1. We have chosen the identity matrix for the initial
unmixing matrix.

As shown in Fig. 1(c), the natural gradient algorithm
provided satisfactory performance for all simulated mixing
matrices. This supports the equivariance property of the
natural gradient [7]. Comparing Figs. 1(b) and (d), we find
that the modified infomax algorithm failed to separate
signals within one sweep of training for some mixing
matrices with very large condition numbers, but it could
separate a much larger number of mixing signals than the
ordinary gradient algorithm. The poor performance mostly
arose from very ill-conditioned mixing matrices. Fig. 1(e)
shows the performance indices for the algorithm proposed
by Ling et al. [22]. The algorithm is similar to the
Hérault–Jutten algorithm [17] and corresponds to the
modified infomax algorithm with fixed diagonal elements
of the unmixing matrix W. Although Ling et al. did not use
sgnð�Þ as the score function, we used it for its efficiency.
However, the algorithm failed to separate signals much
more frequently than the modified infomax algorithm.
Note that the modified infomax algorithm provides a
simpler formulation than the other algorithms and
successfully separated signals within 160,000 samples
except for some severely ill-conditioned mixing matrices.
With the modified infomax algorithm, Fig. 2 displays the

performance indices and the derivatives of the cost
function computed by Eq. (3.5) with Z ¼ 1 for two mixing
matrices. The condition numbers of the mixing matrices
were 4.796 and 19.437. For the mixing 1 which gave the
relatively small condition number, the modified infomax
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Fig. 2. Performance indices and derivatives of the cost function for two mixing matrices: (a) performance index for mixing 1, (b) derivative of the cost

function for mixing 1, (c) performance index for mixing 2, (d) derivative of the cost function for mixing 2.
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algorithm converged after a short time period, and the
derivative of the cost function did not have a positive value
during the learning period. However, for the mixing 2, the
algorithm did not provide positive derivative values during
some time period, but it did at some time indices after that
period. Although the modified infomax algorithm did not
guarantee positive definiteness of the unmixing matrix, the
negative derivative was kept for the mixing 1. This means
that the algorithm found out a solution of a positive
definite unmixing matrix from initialization with the
identity matrix with resort to the scaling and permutation
indeterminacy. Moreover, note that the algorithm success-
fully obtained a solution for the mixing 2 even though
some derivative values were positive. Recall that positive
definiteness of the unmixing matrix is a rigorous condition
for the convergence, but failing to meet the condition does
not necessarily mean that the algorithm cannot find out a
solution.

Fig. 3 shows the first time indices when the positive
derivative of the cost function occurred for the 2000 mixing
matrices. The probability that the positive derivative
occurred during the learning period is roughly proportional
to the condition number of the mixing matrix. A mixing
matrix with a high condition number is relatively close to a
singular matrix, so the corresponding unmixing matrix is
usually far from the identity matrix for initialization.
Therefore, the unmixing matrix cannot keep positive
definiteness more probably for an ill-conditioned mixing
matrix. The rate not to have the positive derivative during
the learning period for the 2000 mixing matrices was 91.8%
which was a great portion in view of the fact that the
algorithm did not ensure positive definiteness of the
unmixing matrix. Furthermore, recalling that the separation
rate was 96.5%, the modified infomax algorithm success-
fully found out a solution for a large part of the cases where
the unmixing matrices failed to keep positive definiteness.
In order to analyze the effect of the score function

assumption on the performance of the modified infomax
algorithm, the performance indices are displayed in Fig. 4
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when tanhð�Þ was used as the score function for the same
source signals and mixing matrix as in Fig. 2(a). In
addition, the stability of the equilibrium points needs a
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positive slope of the score function as shown in the
previous section, but sgnð�Þ ¼ limq!1 tanhðq�Þ does not
fulfill this condition. Since tanhð�Þ is monotonically
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increasing and differentiable everywhere, it also can be
used for estimating this influence. From the standpoint of
comparing convergence curves, any significant difference
among the algorithms could not be found, although the
error on the score function reduced convergence speeds.
Also, the successful separation rate within 160,000 samples
for the 2000 mixing matrices was 91.9%. Considering slow
convergence caused by the error on the score function, it
can be reasoned that this convergence property was not
seriously affected by mixing condition as well. Addition-
ally, sgnð�Þ as the score function provided faster conver-
gence than tanhð�Þ even though the former did not meet the
condition that the score function should have a positive
slope. This result might support that this condition is not
indispensable.

When the mixtures were corrupted by white Gaussian
noise, performance indices are also shown in Fig. 5. For the
same signal-to-noise ratio, all the algorithms gave the
almost same performance indices, and the noise effect for
the modified infomax algorithm was not notably different
from that for the other algorithms.

As a final experiment for instantaneous mixtures, three
independent source signals generated from different distribu-
tions have been considered. The distributions were uniform,
Laplace, and the function obtained by summing two
Gaussian distributions. To deal with the variously distributed
signals, the score function was obtained in the same way as in
the extended infomax algorithm [21]. Because the number of
parameters was increased and the extended algorithm
required additional parameter estimation to obtain appro-
priate score functions, the adaptation has been repeated 10
times for 160,000 i.i.d. samples. Fig. 6 shows the performance
indices for 100 randomly generated 3� 3 mixing matrices.
This result demonstrated that the modified infomax algo-
rithm could successfully separate various kinds of sources
within 10 sweeps except for some ill-conditioned mixing cases.
differently distributed source signals: (a) condition number of mixing

matrix, (b) performance indices.
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6.2. Simulations on convolved mixtures

To perform experiments for convolved mixtures, we
have mixed real-recorded speech signals. Each speech
signal had 10 second length at 16 kHz sampling rate. It is
known that speech signal approximately follows Laplacian
distribution. Therefore, sgnð�Þ was used as the score
function jð�Þ. Experimental results were compared in terms
of interference reduction ratio (IRR), which was defined as
the difference between the signal-to-interference ratios
(SIRs) of the final and the initial unmixing systems. The
SIR is a ratio of the signal power to the interference power
at the outputs given by

SIRðdBÞ ¼
1

2
� 10 log

hðu1;s1 ðnÞÞ
2
i

hðu1;s2 ðnÞÞ
2
i
�
hðu2;s2ðnÞÞ

2
i

hðu2;s1ðnÞÞ
2
i

 !�����
����� (6.2)

for 2� 2 mixing/unmixing system [27]. In Eq. (6.2), uj;si
ðnÞ

denotes the jth output of the cascaded mixing/unmixing
system when only siðnÞ is active.
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We first show results for a simple mixing environment,
which is [29]

A11ðzÞ ¼ 1� 0:4z�25 þ 0:2z�45,

A12ðzÞ ¼ 0:4z�20 � 0:2z�28 þ 0:1z�36,

A21ðzÞ ¼ 0:5z�10 þ 0:3z�22 þ 0:1z�34,

A22ðzÞ ¼ 1� 0:3z�20 þ 0:2z�38. ð6:3Þ
0 200 400 600 800 1000

-0.2

-0.1

0

0.1

0.2

n

a 1
1 

(n
)

0 200 400 600 800 1000

-0.2

-0.1

0

0.1

0.2

n

a 2
1 

(n
)

(a)

(c)

Fig. 9. Simulated room impulse responses for the virtu

4.0

5.0

3.0

(length in meter)

1.3

1.5

1.2
1.2

1.5

1.7

1.5

2.1

Mic.2
Mic.1

1.1

1.0

Source 21.2
2.3

Source 1

Fig. 8. Virtual room to simulate impulse responses from two speaker

points to two microphone points.
As an unmixing system, we used a 2� 2 filter system whose
initialization was an identity, and the length of each filter
was set to 100 taps for the mixing environment.
Fig. 7 displays the IRRs of the three algorithms for the

mixing environment. Each signal was divided into eight
intervals, each of which consisted of 20,000 samples. We
repeated the adaptation with the same mixtures 10 times.
Therefore, there were 80 intervals on the horizontal axis of
the figure. The speech signal had many silent sections, and
the SIR could not be improved in these sections. Therefore,
the intervals had different IRRs depending on whether the
intervals included the silent sections. The modified infomax
algorithm showed better IRRs than the other algorithms.
The natural gradient algorithm did not provide good
performance because it had to use a very small step size in
order to converge on a desired solution stably and it
accumulated errors of the adaptive unmixing filter coeffi-
cients to rðnÞ. In accordance with the case of instantaneous
mixtures, the ordinary gradient algorithm displayed
inferior performance relative to the modified infomax
algorithm.
To obtain mixtures from a more complex environment,

we constructed 10 different 2� 2 mixing systems with the
commercial software ‘Room Impulse Response v2.5’ [14],
which calculates impulse responses using a time-domain
image expansion method in a rectangular enclosure. We
used a virtual room with the dimensions 4m� 5m� 3m,
and the reverberation time was 160ms. Fig. 8 shows one of
the mixing systems to simulate the impulse responses from
two speaker points to two microphone points, and Fig. 9
shows the resulting impulse responses. To avoid excessive
computation, each unmixing filter consisted of 1024 taps.
In this experiment, we repeated the adaptation with the
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mixed signals 500 times to train the unmixing system,
because the mixing system was much more complex than
the previous mixing environment. Other settings were the
same as those of the previous experiments. Fig. 10 shows
the mean values of the IRRs for the 10 mixing systems. We
also display the standard deviation values of the IRRs to
show the sensitivity for specific mixing systems. The three
algorithms did not show particularly outstanding values in
terms of the standard deviation. Because the mixing system
was much more complex, the overall convergence was
slower than in the previous experiment. In particular, the
natural gradient algorithm showed quite slower conver-
gence because of the harder small-step-size restriction with
larger adaptive filter lengths. Above all, it should be noted
that the modified infomax algorithm showed superior
IRRs with less computational complexity relative to the
other algorithms.

7. Conclusion

In this paper, a modified infomax algorithm to perform
BSS was presented. The algorithm is a compromise
between the ordinary gradient algorithm and the natural
gradient algorithm. We showed the proof of local stability
of the desired equilibrium points for BSS by using
monotonically increasing and odd score functions. The
algorithm gave a simpler formulation than the other
algorithms, and it overcame the disadvantages of the
natural gradient algorithm such as the approximation error
and the restriction to a small step size for convolved
mixtures. Simulations on convolved mixtures showed that
the modified infomax algorithm provided better perfor-
mance than the other algorithms. For instantaneous
mixtures, furthermore, our algorithm attained good
performance during learning period except for some very
ill-conditioned mixings.
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Appendix A. Proof of local stability for two instantaneous

mixtures from two Laplace-distributed source signals

For BSS of instantaneous mixtures, equilibrium points
of the modified infomax algorithm satisfy

E½DWðnÞ� / I� E½jðuðnÞÞuTðnÞ� ¼ 0. (A.1)

Assuming Laplace-distributed source signals, there are 16
equilibrium points for two estimated independent signals
and two observations. In this case, the score function jð�Þ is
given by sgnð�Þ. Omitting the time index n, the equilibrium
points are

t11 ¼ �l1; t12 ¼ 0; t21 ¼ 0; t22 ¼ �l2, (A.2)

t11 ¼ 0; t12 ¼ �l2; t21 ¼ �l1; t22 ¼ 0, (A.3)

t11 ¼ c11
2
3

l1; t12 ¼ c12
2
3

l2,

t21 ¼ c21
2
3

l1; t22 ¼ c22
2
3

l2,

cij ¼ �1;
Y2
i¼1

Y2
j¼1

cij ¼ �1, ðA:4Þ

where tij is the ði; jÞth element of the overall matrix
T ¼WA, and the source pdfs are p1ðs1Þ ¼ ðl1=2Þe

�l1js1j

and p2ðs2Þ ¼ ðl2=2Þe
�l2js2j. Eqs. (A.2) and (A.3) are proper

separating states whereas Eq. (A.4) is not.
Let us examine local stability on these equilibrium

points. It is known that an equilibrium point is locally
stable if the eigenvalues of J have negative real parts
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[23,24,28], where
J ¼

q
qw11

E½1� jðu1Þu1�
q

qw12
E½1� jðu1Þu1� � � �

q
qw22

E½1� jðu1Þu1�

q
qw11

E½�jðu1Þu2�
q

qw12
E½�jðu1Þu2� � � �

q
qw22

E½�jðu1Þu2�

..

. ..
. . .

. ..
.

q
qw11

E½1� jðu2Þu2�
q

qw12
E½1� jðu2Þu2� � � �

q
qw22

E½1� jðu2Þu2�

266666666664

377777777775
. (A.5)
Here, wij is the ði; jÞth element of the mixing matrix W.
Without finding the roots of detðlI� JÞ ¼ 0, we can check
with the Routh–Hurwitz criterion whether the eigenvalues
of J have negative real parts [18,26].

Conditions for local stability of the separating equili-
brium points are as follows:

a11a22a0;
a12a21

a11a22
o1; w1140; w2240

for the points t11 ¼ �l1; t12 ¼ 0,

t21 ¼ 0; t22 ¼ �l2, ðA:6Þ

a12a21a0;
a11a22

a12a21
o1; w1140; w2240

for the points t11 ¼ 0; t12 ¼ �l2,

t21 ¼ �l1; t22 ¼ 0, ðA:7Þ

where aij is the ði; jÞth element of the mixing matrix A. Note
that any mixing matrix belongs to one of the conditions in
Eqs. (A.6) and (A.7). In addition, one can always find an
unmixing matrix such that w1140 and w2240 because of
scale indeterminacy. Therefore, the modified infomax
algorithm can obtain locally stable equilibrium points
which correspond to separating states. In the same way, it
can be proved that the non-separating equilibrium points
are locally unstable.
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