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Abstract

We present a filter bank approach to perform independent component analysis (ICA) for convolved mixtures. Input signals are split

into subband signals and subsampled. A simplified network performs ICA on the subsampled signals, and finally independent

components are synthesized. The proposed approach achieves superior performance than the frequency domain approach and faster

convergence with less computational complexity than the time domain approach. Furthermore, it requires shorter unmixing filter length

and less computational complexity than other filter bank approaches by designing efficient filter banks. Also, a method is proposed to

resolve the permutation and scaling problems of the filter bank approach.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Independent component analysis (ICA) is a signal
processing method to express multivariate data as linear
combinations of statistically independent random variables
[8,13,15]. With the emerging trend of using higher order
statistical methods, ICA plays an important role in
numerous applications such as speech enhancement,
telecommunications, medical signal processing, and feature
extraction [2,6,16,17]. In real-world situations, we often
meet with convolved mixtures of acoustic signals where
mixing environments have very complex reverberation.
Therefore, ICA for acoustic convolved mixtures is a
challenging problem that has attracted much interest.
Among many approaches to ICA, a simple and biologically
plausible adaptive learning algorithm has been proposed
e front matter r 2006 Elsevier B.V. All rights reserved.
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with entropy maximization by Bell and Sejnowski [5]. To
deal with convolved mixtures, the algorithm has been
extended to deconvolution of mixtures in the time domain
[25] and the frequency domain [19,22,23].
The time domain approach requires intensive computa-

tions with a long reverberation, and it shows slow
convergence speed, especially for colored input signals.
On the other hand, the frequency domain approach can
decrease the computational load, because multiplication in
each frequency bin replaces the convolution operation in
the time domain. However, performance of the frequency
domain approach is limited due to the fact that a long
frame size is required to cover a long reverberation,
whereas the number of learning data in each frequency
bin decreases as the frame size increases [4].
In an effort to overcome these disadvantages of the time

domain and the frequency domain approaches, we present
a filter bank approach to ICA for convolved mixtures. In
this approach, the input signals are split into a number of
subbands. Then, each subband signal is decimated and
used for ICA. Using an oversampled filter bank that is
alias-free and provides near perfect reconstruction, we
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attempt to obtain desired independent components, which
have negligible side-effects from the filter bank. Since the
ICA algorithm in each subband is basically the same as the
time domain approach, the filter bank approach does not
have the performance limitation of the frequency domain
approach. It also enables us to select the number of filters
of the filter bank independently of reverberation. In
addition, the decimation of the subband signals provides
computational savings and a convergence speed that is
much faster than that of the time domain approach [28,30].

Like the frequency domain approach, filter bank
approaches also have permutation and scaling indetermi-
nacy, which is general in ICA algorithms. In these
approaches, fixing the indeterminacy is very essential and
important to provide desired independent components
since even one permutation error makes severe perfor-
mance degradation. Therefore, the indeterminacy should
be carefully considered and methods to fix the indetermi-
nacy should be provided according to their own ap-
proaches. As a solution to fix the indeterminacy, we
propose a modification of the Murata’s method [18] by
using correlations among envelopes of subband frequency
spectra. In addition, we design filter banks whose decima-
tion factor is slightly smaller than the number of subbands.
Therefore, the required number of taps in unmixing filters
is rather small to span a time range, and the computational
complexity to perform ICA is rather little.

The entropy maximization algorithm is employed as the
learning rule of ICA networks for fair comparison of our
filter bank approach with the conventional time domain
and frequency domain approaches. The comparison
demonstrates the efficiency of the proposed approach
against the time domain approach as well as the frequency
domain approach clearly.

The remainder of the paper is organized as follows:
Section 2 briefly reviews the time domain and the frequency
domain approaches to ICA for convolved mixtures.
Section 3 presents our filter bank approach to ICA and
compares properties of the approach with those of the other
approaches. In Section 4, indeterminacy of ICA is discussed,
and a method to solve the indeterminacy for the filter bank
approach is also proposed. The proposed method is
compared with the other approaches through experiments
on blind source separation in Section 5. Finally, some
concluding remarks are presented in Section 6.

2. Independent component analysis

Let us consider a set of unknown independent components,
sðnÞ ¼ ½s1ðnÞ; s2ðnÞ; . . . ; sNðnÞ�

T, such that the components
siðnÞ are zero-mean and mutually independent. If mixing
involves convolution and time-delays, an observation is

xiðnÞ ¼
XN

j¼1

XLm�1

m¼0

aijðmÞsjðn�mÞ, (1)

where aijðmÞ denotes a mixing filter coefficient [16].
To obtain the independent components from the
observations, a feedback architecture [15,26] can be
considered as

uiðnÞ ¼
XLa

m¼0

wiiðmÞxiðn�mÞ þ
XN

j¼1;jai

XLa

m¼1

wijðmÞujðn�mÞ,

ð2Þ

where adaptive filters wijðmÞ force outputs uiðnÞ to
reproduce the original independent components siðnÞ.
Entropy maximization algorithm provides learning rules
of the adaptive filter coefficients as follows [25]:

Dwiið0Þ / 1=wiið0Þ � jðuiðnÞÞxiðnÞ,

DwiiðmÞ / �jðuiðnÞÞxiðn�mÞ; ma0,

DwijðmÞ / �jðuiðnÞÞujðn�mÞ; iaj,

jðuiðnÞÞ ¼ �
qpðuiðnÞÞ=quiðnÞ

pðuiðnÞÞ
, ð3Þ

where jð�Þ is called a score function and pðuiÞ denotes the
probability density function (pdf) of ui. With a long
reverberation, the time domain approach has a heavy
computational load to compute convolution of long filters
and updating a large number of filter coefficients. In
addition, convergence speed is slow, especially for colored
input signals such as speech signals.
Instead of the time domain approach, one can consider

the frequency domain approach [22,23], wherein the
convolved mixtures can be expressed as

xðf ; nÞ ¼ Aðf Þsðf ; nÞ; 8f : ð4Þ

Here xðf ; nÞ and sðf ; nÞ are vectors, each of which is a
frequency component of the mixtures and the independent
components at frequency f, respectively. Aðf Þ denotes a
matrix containing elements of the frequency transforms of
the mixing filters at frequency f. From Eq. (4), one can
reason that a convolved mixture can be represented by a set
of instantaneous mixtures in the frequency domain. Thus,
the independent components can be recovered by applying
ICA for the instantaneous mixtures in each frequency bin.
Contrary to the time domain approach, the input signals
xðf ; nÞ are complex numbers. In order to deal with
complex-valued data, a score function was proposed as [20]

jðuiÞ ¼ �
qpðjuijÞ=qjuij

pðjuijÞ
expðj � ffuiÞ. (5)

Applying the natural gradient from Amari et al. [2,7], the
entropy maximization algorithm in each frequency bin is

DWðf Þ / ½I� jðuðf ; nÞÞuHðf ; nÞ�Wðf Þ, (6)

where Wðf Þ is a matrix which consists of the frequency
transforms of the unmixing filters at frequency f.
The frequency domain approach can decrease the

computational load because the convolution operation in
the time domain are substituted with multiplication in each
frequency bin. However, a long frame size is required to
cover a long reverberation. To maintain computational
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efficiency and obtain data that are not significantly
overlapped with those in adjacent frames, the frame shift
has to increase as the frame size increases. Then, the
number of data in each frequency bin decreases, causing a
shortage of data to learn the unmixing matrices and to
measure the independence of outputs. Therefore, the
performance of the frequency domain approach is limited
because of the above-mentioned trade-off between cover-
ing a long reverberation and sufficient amount of learning
data [4].

3. A filter bank approach to ICA

In proposing a filter bank approach to ICA, we first
consider filter banks. Many researchers have studied
adaptive filtering in subbands generally with least-mean-
square (LMS) type algorithms [10,30,31]. If the input
signals are decomposed by critically sampled filter banks,
cross adaptive filters between adjacent bands are required
to compensate for the distortion caused by aliasing [10], or
spectral gaps are required in order to avoid aliasing [31].
However, the cross adaptive filters introduce additional
adaptive parameters and may induce slow convergence
speed with poor performance. On the other hand, the
spectral gaps distort reconstructed signals.

With oversampled filter banks, in which the decimation
factor M is smaller than the number K of analysis filters,
aliasing can be neglected with each filter having a high
stopband attenuation. The oversampled filter banks make
it possible to perform adaptive filtering without requiring
cross adaptive filters or distorting reconstructed signals.
The oversampled filter banks can be efficiently and
systematically constructed by complex modulation from a
real-valued low-pass prototype filter [12,29,30]. In the filter
bank, analysis filters hðk; nÞ are obtained by a generalized
discrete Fourier transform (GDFT) [9],

hðk; nÞ ¼ ejð2p=KÞðkþ1=2Þðn�ðLq�1Þ=2Þ � qðnÞ,

k ¼ 0; 1; . . . ;K � 1; n ¼ 0; 1; . . . ;Lq � 1, ð7Þ

where Lq is the length of the prototype filter qðnÞ. Complex-
conjugate and time-reversed versions of the analysis filters,

f ðk; nÞ ¼ ~hðk; nÞ ¼ h�ðk;Lq � n� 1Þ, (8)
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Fig. 1. A 2� 2 network for the oversam
are selected for synthesis filters. The analysis and synthesis
filters can be derived from one prototype filter qðnÞ, and the
prototype filter can be designed by iterative least-squares
algorithm with a cost function that considers reconstruc-
tiveness and stopband attenuation [12]. In addition, we can
implement the filter bank efficiently by employing poly-
phase representation of the analysis and synthesis filters
[29,30].
When we perform ICA in the oversampled filter bank,

adaptive parameters in each subband can be adjusted
without any information of the other subbands because of
the negligible aliasing of the filter bank [27,29,30]. Thus,
the filter bank approach is appropriate for parallel
processing. Fig. 1 shows a 2� 2 network for the over-
sampled filter bank approach to ICA. The input signals,
which are mixtures of unknown independent components,
are decomposed into subband signals by analysis filters.
Then, each subband signal is subsampled by a factor M.
Although the input signals are split into subband signals,
each subband still covers a somewhat broad frequency
band. Moreover, when the subband signal is subsampled,
the decimation factor M is usually much smaller than the
reverberation length in mixing environments. For blind
source separation on acoustic mixtures as an example, the
decimation factor and the reverberation length are
normally ten or several tens and hundreds or thousands,
respectively. Therefore, one should regard the subsampled
signals as convolved mixtures whose reverberation length
decreases by a factor M, and a typical ICA algorithm for
convolved mixtures can be used to obtain independent
components from the subsampled signals in each subband.
Here, the unmixing filter length is much shorter than that
of the full-band time domain approach. Each output signal
from the ICA network is expanded, and the original
independent components can be reconstructed from the
subband output signals through synthesis filters after fixing
permutation and scaling.
As a method to perform ICA for convolved mixtures in

each subband, we may apply the time domain approach to
ICA in Section 2. With the oversampled filter bank above,
subband signals are complex-valued data. Therefore, the
learning rules of the adaptive filter coefficients are changed
to deal with complex-valued data, and the polar-coordinate
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based score function Eq. (5) is used in each subband. Using
a feedback network in each subband and considering
complex-valued data, the learning rules are

Dwiiðk; 0Þ / 1=w�iiðk; 0Þ � jðuiðk; nÞÞx
�
i ðk; nÞ,

Dwiiðk;mÞ / �jðuiðk; nÞÞx
�
i ðk; n�mÞ; ma0,

Dwijðk;mÞ / �jðuiðk; nÞÞu
�
j ðk; n�mÞ; iaj, ð9Þ

where wijðk;mÞ, uiðk; nÞ, and xiðk; nÞ represent adaptive
filter coefficients, estimated independent components, and
input signals in the kth subband, respectively.

In summary, the procedure for the filter bank approach
will be described as follows:

Step 1: Split each mixture xiðnÞ into subband signals
x̂iðk; nÞ by analysis filters hðk;mÞ to give

x̂iðk; nÞ ¼
XLq�1

m¼0

hðk;mÞxiðn�mÞ; i ¼ 1; 2; . . . ;N, (10)

where k denotes the subband index.
Step 2: Decimate(subsample) each subband signal to

make subband input signal for the ICA network by

xiðk; nÞ ¼ x̂iðk; nMÞ; n ¼ 0; 1; 2; . . . , (11)

where M denotes the decimation factor. One sample is
obtained at the decimated rate for each subband signal.

Step 3: At the subsampled rate, collect subband input
signals xiðk; nÞ for the corresponding subband (here, the
kth subband), and compute subband output signals uiðk; nÞ
for the ICA network. Using a feedback architecture for the
ICA network in each subband,

uiðk; nÞ ¼
XLsa

m¼0

wiiðk;mÞxiðk; n�mÞ

þ
XN

j¼1;jai

XLsa

m¼1

wijðk;mÞujðk; n�mÞ,

i ¼ 1; 2; . . . ;N, ð12Þ

where wijðk;mÞ denotes adaptive filter coefficients and Lsa is
the adaptive filter length.

Step 4: At the subsampled rate, update the adaptive filter
coefficients for the ICA network in each subband. For the
feedback architecture represented by Eq. (12), use Eq. (9)
as learning rules.

Step 5: Fix permutation and scaling of the subband
output signals uiðk; nÞ. (For more detail, refer to the next
section.)

Step 6: Expand each subband output signal by

ûiðk; nÞ ¼
uiðk; lÞ if n ¼ lM; l ¼ 0; 1; 2; . . . ;

0 otherwise;

(
(13)

where M denotes the decimation factor.
Step 7: Reconstruct desired independent components

uiðnÞ from the expanded subband output signals ûiðk; nÞ
using synthesis filters f ðk;mÞ. That is,

uiðnÞ ¼
XK�1
k¼0

XLq�1

m¼0

f ðk;mÞuiðk; n�mÞ; i ¼ 1; 2; . . . ;N. ð14Þ

In the filter bank approach, the mixtures at each subband
are considered as convolved mixtures, and the decimation
factor can be chosen by designing an appropriate filter
bank. If one uses a decimation factor which does not
degrade the performance, the filter bank approach to ICA
does not have the performance limitation of the frequency
domain approach. In addition, the ICA network in each
subband can have a much simpler structure (composed of
much shorter filters) than that for the full-band time
domain approach because the input subband signals are
decimated by a factor M and approximately one Mth filter
length in each subband is sufficient to span the correspond-
ing time ranges of the time domain approach. Since the
ICA network in each subband processes signals at the
subsampled rate and the input signals of the network are
also decimated, computational complexity is considerably
reduced for long-length adaptive filters.
Let us assume that we have La adaptive filter coefficients

for a branch of the time domain approach. Assuming that
there are N mixtures convolved from N independent
components and direct filters are forced to scaling factors,
the number of adaptive filter coefficients is approximately
ðN2 �NÞLa. Then, 2ðN

2 �NÞLa number of multiplications
are required to compute outputs of the ICA network and
update the filter coefficients whenever a sample has been
obtained in an observation. On the other hand, the number
of required filter coefficients of a branch Lsa is approxi-
mately La=M in each subband for the filter bank approach
with a decimation factor M. For real input signals, we need
the lower half subbands of a uniform GDFT filter bank
because of symmetry. With a K-channel oversampled filter
bank, the required number Na of multiplications per
sampling interval for the observations is

Na �
1

M
4

K

2
2ðN2 �NÞ

La

M
. (15)

The factor 1=M and 4 are respectively multiplied because
the filter bank approach processes signals at the sub-
sampled rate in each subband and one complex multi-
plication equals four real multiplications. Therefore, the
number of multiplications for the filter bank approach is
approximately 2K=M2 times as large as that for the time
domain approach. In addition, computational savings will
be maximized for the same number of subbands K when
the decimation factor M approaches to K with negligible
aliasing of the filter banks.
Additionally, in this approach the number of subbands

can be chosen regardless of reverberation. Also, the
decimation operation omits several adjacent samples, so
that correlation between adjacent samples in a sub
sampled signal is much smaller than that in the signal
before decimation. Therefore, this approach improves
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convergence of the adaptive filter coefficients of the ICA
network because subband input signals might be more
whitened by decimation and the number of the adaptive
filter coefficients in each subband is much smaller than that
of the time domain approach.

As some related works to date, several papers have been
reported on blind source separation in subbands. Some
researchers have proposed use of overcomplete subband
representation and orthogonal filter banks [11,24].
Although they generated oversampled signals using some
operations which were different from the Fourier trans-
form, the methods basically regarded the subband signals
as instantaneous mixtures rather than convolved mixtures.
Therefore, they can be regarded as modifications of the
frequency domain approach in this paper. As such, they
still have the basic drawbacks of the frequency domain
approach, although they might mitigate the problems.
These methods require a lot of subbands (frequency bins in
this paper) in order to cover a long reverberation. In this
case, too many subbands worsen the performance limita-
tion problem because of shortage of data in subbands.
They also make the permutation problem severe because of
the great number of subbands and inaccurate estimation of
envelopes in subbands.

Other authors have attempted to separate convolved
mixtures in each subband [3,14]. However, they did not
consider the permutation indeterminacy or mitigated it by
using null beamformers as the initial value of the ICA
network. Note that this method cannot function as a
substantial solution for permutation correction which is
very important to recover desired independent components
[3,14]. On the contrary, in the next section, we will provide
an algorithm which is fit for the permutation problem of
the filter bank approach. In addition, the separation
algorithm in the paper authored by Araki et al. does not
converge at all for the long unmixing filters without
initialization using null beamformers, and the decimation
factor of the filter bank was one-fourth of the number of
subbands [3]. Since the decimation factor is rather small
comparing with the number of subbands, it increases
unmixing filter length to span a time range and the
computational load regardless of separation methods in
subbands. Regarding filter bank structure, the Araki’s
structure required additional computation for single side-
band modulation and demodulation. Furthermore, in the
GDFT filter bank structure of this paper, the computa-
tional burden for analyzing and synthesizing signals can be
reduced by using special relation among filters which is
GDFT modulation in addition to polyphase representation
[29]. In the Huang’s method, the used filter banks suffered
from large aliasing distortion or did not assure perfect
reconstruction of output signals [14]. The alias-free
property and the perfect reconstruction are very essential
requirements in order to use the filter banks without any
side-effects because they limit the performance of the
methods primarily apart from separation capability in
subbands. They reported that the increased aliasing
distortions significantly deteriorated the performance with
more than 4 subbands [14].

4. Discussion on ICA indeterminacy

For convolutive mixtures which are mixed from tempo-
rally correlated independent components, there exists
indeterminacy of outputs up to permutation and arbitrary
filtering. Entropy maximization attempts to make the
outputs temporally whitened, which may degrade outputs
in many applications such as separation of natural signals.
Whitening the recovered outputs can be avoided by forcing
direct filters wiiðk;mÞ to scaling factors [25].
The filter bank approach has an ICA network in each

subband whose filter coefficients can be adapted indepen-
dently of the other subbands. Thus, the filter bank
approach has the same permutation and scaling problems
as the frequency domain approach. Assuming that the
independent components have time-varying statistical
properties, we propose a modification of the Murata’s
method to fix permutation and scaling as follows:

Step 1: Normalize estimated independent components
uiðk; nÞ in each subband by the corresponding scaling
factors wiiðk; diÞ to give

viðk; nÞ ¼
uiðk; nÞ

wiiðk; diÞ
; i ¼ 1; 2; . . . ;N, (16)

where di is an appropriate delay for unmixing systems.
Step 2: Compute envelopes of frequency spectra by

x½viðk; nÞ� ¼
1

2T þ 1

XnþT

n0¼n�T

jviðk; n
0Þj, (17)

where T is a positive constant.
Step 3: Find a subband k1 which shows the smallest

similarity. That is,

k1 ¼ arg min
k

X
iaj

rfx½viðk; nÞ�; x½vjðk; nÞ�g. (18)

Here, r denotes a normalized correlation expressed as

rfaðnÞ;bðnÞg ¼
1=Ln

P
naðnÞbðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=Ln

P
na2ðnÞ1=Ln

P
nb

2
ðnÞ

q , (19)

where Ln denotes the length of aðnÞ and bðnÞ.
Step 4: For k1, assign estimated independent compo-

nents to specific outputs by

u0iðk1; nÞ ¼ viðk1; nÞ; i ¼ 1; 2; . . . ;N. (20)

Step 5: For k ¼ fk1 þ 1; k1 þ 2; . . . ;K � 1g, find a
permutation sðiÞ which maximizes the normalized correla-
tion between the envelope of the kth subband and a
weighted average from the envelopes of the previous
subbands with a forgetting factor m, and assign the
permutation to outputs. That is,

sðiÞ ¼ arg max
sðiÞ

XN

i¼1

rfx½vsðiÞðk; nÞ�;X½u0iðk; nÞ�g, (21)
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where

X½u0iðk; nÞ�

¼

x½u0iðk1; nÞ� if k ¼ k1 þ 1;

mX½u0iðk � 1; nÞ� þ ð1� mÞ

�x½u0iðk � 1; nÞ� if k4k1 þ 1;

8>><
>>: ð22Þ

and

u0iðk; nÞ ¼ vsðiÞðk; nÞ; i ¼ 1; 2; . . . ;N. (23)

Step 6: For k ¼ fk1 � 1; k1 � 2; . . . ; 0g, repeat step 5
except

X½u0iðk; nÞ�

¼

x½u0iðk1; nÞ� if k ¼ k1 � 1;

mX½u0iðk þ 1; nÞ� þ ð1� mÞ

�x½u0iðk þ 1; nÞ� if kok1 � 1:

8>><
>>: ð24Þ

In this method, step 1 removes the ambiguity of scaling for
estimated independent components of the ICA network in
each subband of the filter bank approach. When the original
Murata’s method is used in the frequency domain approach
[18], each estimated independent component is multiplied by
the inversed unmixing matrix in each frequency bin in order
to avoid any ambiguity of scaling as follows:

vðf ; n; iÞ ¼Wðf Þ�1½0 � � � 0 uiðf ; nÞ 0 � � � 0�
T, (25)

where uiðf ; nÞ denotes the ith element of uðf ; nÞ. However, as
we described in step 1, the ambiguity of scaling in the filter
bank approach, is removed by normalizing the estimated
independent components with the corresponding scaling
factors used as the direct filters instead of using the
decomposition of the frequency spectra in Eq. (25). There-
fore, the vector vðf ; n; iÞ in Eq. (25) corresponds to a scalar
value viðk; nÞ with subband index k, and for computing the
envelopes of frequency spectra, step 2 has a different
formulation from the original Murata’s method for the
frequency domain approach

x½vðf ; n; iÞ� ¼
1

2T þ 1

XnþT

n0¼n�T

XN

j¼1

jvjðf ; n
0; iÞj,

i ¼ 1; 2; . . . ;N, ð26Þ

where vjðf ; n; iÞ denotes the jth element of vðf ; n; iÞ.
With the definition of similarity given by

simðf Þ �
X
iaj

rfx½vðf ; n; iÞ�; x½vðf ; n; jÞ�g, (27)

the original Murata’s method sorts frequency bins in order
of weakness of similarity among independent components,
so that

simðf 1Þpsimðf 2Þp � � �psimðf F Þ. (28)

Here F is the number of frequency bins. For the frequency
bin f 1 which has the smallest correlation, its independent
components are assigned to specific outputs u0ðf 1; n; iÞ ¼
vðf 1; n; iÞ. Then, for the frequency bins ff l ; l ¼ 2; 3; . . . ;Fg
sorted in the increasing order of the correlation, the
independent components are assigned to the outputs that
have more correlation between the envelopes of the
frequency bins. That is,

u0ðf l ; n; iÞ ¼ vðf l ; n; sðiÞÞ, (29)

where the permutation is given as

sðiÞ ¼ arg max
sðiÞ

XN

i¼1

r x½vðf l ; n; sðiÞÞ�;
Xl�1
j¼1

x½u0ðf j ; n; iÞ�

( )
.

(30)

The process is repeated in turns till all the frequency bins
are covered.
However, if the next frequency bin is far from the

previous frequency bins, the envelopes of the frequency
spectra may be very different even though the frequency
spectra are obtained from the same signal. Therefore, we
do not use this order for the subbands to fix the
permutation in the filter bank approach except a subband
which has the minimum similarity, and we just find the
subband by Eq. (18) in step 3. After assignment by Eq. (20)
has been done for the k1th subband, we perform the
assignments for the subbands adjacent to the previous
subbands in step 5 and 6 instead of the subband which has
the next smallest similarity. In addition, when independent
components are assigned to outputs, we use the normalized
correlation between the envelope of a subband and the
weighted average from the envelopes of the previous
subbands by Eqs. (22) and (24). This will emphasize the
envelopes of close subbands. In this way, we may get more
desirable results than those obtained by using Eq. (30) since
the envelopes from close subbands will be more similar
than those from distant subbands.
In the frequency domain approach, we need many

frequency bins to cover a long reverberation, e.g.
thousands of bins for a normal room reverberation. In
this case, the frame size and the frame shift are also very
large and the number of data in each frequency bin
becomes quite small. Thus, the envelope of each frequency
spectrum cannot be accurately estimated to fix the
permutation. However, in the filter bank approach, we
can determine the bandwidths of subbands regardless of
reverberation. Therefore, we can resolve the permutation
problem quite easily in the filter bank approach because
each subband can have a sufficiently broad band so as to
exactly and minutely estimate the envelope of the
frequency spectrum.

5. Experimental results

5.1. Experiments on blind source separation for simulated

mixtures

We have performed experiments on blind source
separation for simulated mixtures with the proposed filter
bank approach. We have used two streams of speech as the
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independent source signals. Each signal had 5 s length at
16 kHz sampling rate. To construct a 2� 2 mixing system,
impulse responses were generated by the image method,
which simulates acoustics between two points in a
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Fig. 2. Virtual room to simulate impulse responses from 2 speaker points

to 2 microphone points.
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rectangular room [1]. Fig. 2 shows a virtual room to
simulate the impulse responses from 2 speaker points to 2
microphone points, and Fig. 3 shows the resulting impulse
responses. All reflection coefficients were 0.6, respectively.
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Fig. 4 shows the frequency response of analysis filters of
a uniform sixteen-channel oversampled filter bank using
the GDFT. The filter bank was designed for alias-free
decimation by a factor M ¼ 10, and it was constructed
from a prototype filter with 220 taps by iterative least-
squares algorithm with a cost function which considers
reconstructiveness and stopband attenuation. The ratio of
the decimation factor to the number of subbands was
larger than that in the paper authored by Araki et al. [3].
As mentioned in Section 3, the efficient filter bank reduced
the required filter length in the ICA network and the
computational burden.

With the oversampled filter bank above, we have
performed experiments on the proposed filter bank
approach to blind source separation. For the separation
system in each subband, we have used a feedback network
in which the number of taps of each filter was d2048

M
e. Based

on the fact that speech signal approximately follows
Laplacian distribution, sgnðjuijÞ expðj � ffuiÞ was used as
the score function jðuiÞ. Fig. 5 shows a learning curve of
the proposed filter bank approach. For comparison,
learning curves of the time domain and the frequency
domain approaches are also displayed. Experimental
results were compared in terms of signal-to-interference
ratio (SIR). For a 2� 2 mixing/unmixing system, the SIR
is defined as a ratio of the signal power to the interference
power at the outputs [21],

SIRðdBÞ ¼
1

2
10 log

hðu1;s1ðnÞÞ
2
i

hðu1;s2ðnÞÞ
2
i
�
hðu2;s2ðnÞÞ

2
i

hðu2;s1ðnÞÞ
2
i

 !�����
�����. (31)

In Eq. (31), ui;sj
ðnÞ denotes the ith output of the cascaded

mixing/unmixing system when only sjðnÞ is active. We have
used a feedback network in which each filter length was
2048 taps for the time domain approach. In the frequency
domain approach, the frame size was 2048, and the frame
shift was an eighth of the frame size. The SIRs of the
frequency domain approach were much smaller than those
of the other two approaches. This supports the previous
argument that the frequency domain approach has a
performance limitation which arises from the conflict
between long reverberation covering and sufficient learning
data. Abruption in the SIRs of the frequency domain
approach is caused by wrong permutation correction
because the envelopes of estimated independent compo-
nents are very similar in the beginning part. In addition, the
learning curves show that the filter bank approach had
much faster convergence speed than the time domain
approach since subband signals were decimated in each
subband for the filter bank approach.
We also compared the proposed method with the Araki’s

method [3] for the same blind source separation problem.
For the Araki’s method, we have used the same number of
subbands as our method, whereas the decimation factor
was 4 since they used a fourth of the number of subbands
for the decimation factor [3]. For the separation network of
the Araki’s method, the number of taps of each filter was
d20484 e. As in the Araki’s paper [3], we initialized the filters
as the null beamformers for 	60
. Fig. 6 shows the learning
curves of the methods with the SIR at the outputs. The
Araki’s method shows rather small SIRs. For the cases
where the initialization fits a problem (direction of the
sources is close to that of the initial null beamformer), the
Araki’s method also shows a satisfactory performance. For
this mixing system, however, the direction of the sources is
very different from the initialization.
Fig. 7(a) shows envelopes of estimated independent

components according to Eq. (17) for the lower half 8
subbands in the proposed method. In each subband, an
independent component shows a quite different envelope
from the other of the same subband, which indicates that
source separation has been successfully achieved. In order
to quantify the ease of fixing the permutation, each bar in
Fig. 8(a) represents the normalized correlation between the
envelope of a subband and the weighted average of the
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envelopes of the previous subbands expressed as

1

2

X2
i¼1

rfx½vsðiÞðk; nÞ�;X½u0iðk; nÞ�g, (32)

where X½u0iðk; nÞ� can be obtained from Eqs. (22) and (24).
In this source separation problem, the 4th subband showed
the smallest similarity. For the other subbands, differences
of the normalized correlations were greater than 0.2. The
filter bank approach provided quite large differences of the
normalized correlations, and we confirmed that the method
successfully resolved the permutation problem.

For the Araki’s method, we have also displayed the
envelopes of estimated independent components for the
lower 9 subbands in Fig. 7(b) and the normalized
correlations between the envelopes in Fig. 8(b). In order
to cover frequency range from 0 to p, the proposed
method used 8 subbands whose center frequencies were
ðp=16Þ � ð2k þ 1Þ; k ¼ 0; 1; . . . ; 7. On the other hand, the
Araki’s method used 9 subbands since center frequencies
were ðp=16Þ � 2k; k ¼ 0; 1; . . . ; 8. In Fig. 7(b), several
subbands provided quite similar envelopes to each other.
Therefore, one can conclude that the method is in difficulty
for separation in the subbands. Furthermore, it should be
noted that there are several subbands where the ‘‘permuta-
tion’’ has larger normalized correlation than the ‘‘no
permutation’’. If the subbands do not perform the
permutation correction as in [3], the resulting SIR may
be lower than the SIR with the permutation correction as
in Fig. 6. Although difference between the two SIRs is
small, real speech quality is quite different. Most energy of
speech is concentrated in low frequency, but human
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auditory system is sensitive to not only low frequency but
also high frequency.
5.2. Experiments on blind source separation for real

recorded mixtures

The proposed filter bank approach has also been applied
to separate real acoustic mixtures recorded with two
microphones in an office room. Mixtures of 5 s length at
16 kHz sampling rate were recorded where two streams of
speech signals were used as source signals. Speakers
and microphones were placed as shown in Fig. 9. In
addition to the recordings of mixtures while the two
speakers are active simultaneously, we also recorded
signals while only one of the speaker is active. The
recordings made while only one speaker is active corre-
spond to the terms

PLm�1
m¼0 aijðmÞsjðn�mÞ in Eq. (1),

and the signals are denoted as xijðnÞ. From these signals,
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Fig. 9. Recording arrangement for 2 speakers and 2 microphones.
we can approximately compute uj;si
ðnÞ using the esti-

mated ICA network so as to estimate the SIR according
to Eq. (31).
When recordings of acoustic signals are made in a real

environment, there are many noise components such as
background noise, measurement noise, and nonlinearity of
equipment. Therefore, the overall output signal uiðnÞ has
not only desired signal and interference but also noise
components. To consider these noise components in a
performance measure, we have used signal-to-noise ratio
(SNR) which can be expressed as

SNRðdBÞ ¼
1

2
� 10 log

hðt1ðnÞÞ
2
i

hðn1ðnÞÞ
2
i
�
hðt2ðnÞÞ

2
i

hðn2ðnÞÞ
2
i

� �
, (33)

where tiðnÞ and niðnÞ denote the desired signal and noise
component of uiðnÞ ði ¼ 1; 2Þ, respectively. Since the
normalized independent components after fixing the
permutation, u0iðk; nÞ, are used for synthesizing the overall
the proposed method

time domain approach
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1Note that there are six different permutations for three indices f1; 2; 3g.
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output signals, desired signal and noise components at the
outputs can be approximately calculated as follows:

If u1ðnÞ and u2ðnÞ, respectively, estimate s1ðnÞ and s2ðnÞ,
then

t1ðnÞ � u1;s1 ðnÞ,

n1ðnÞ � u1ðnÞ � u1;s1ðnÞ,

t2ðnÞ � u2;s2 ðnÞ,

n2ðnÞ � u2ðnÞ � u2;s2ðnÞ. ð34Þ

As denoted before, uiðnÞ is the ith output total signal
whereas ui;sj

ðnÞ is the ith output signal of the cascaded
mixing/unmixing system when only sjðnÞ is active. On the
other hand, if u1ðnÞ and u2ðnÞ, respectively, estimate s2ðnÞ

and s1ðnÞ, then

t1ðnÞ � u1;s2 ðnÞ,

n1ðnÞ � u1ðnÞ � u1;s2ðnÞ,

t2ðnÞ � u2;s1 ðnÞ,

n2ðnÞ � u2ðnÞ � u2;s1ðnÞ. ð35Þ

Fig. 10 displays the SIR and SNR curves of outputs for
mixtures recorded from the microphones of Fig. 9. Setup
for separation was the same as in the simulated mixing. We
skipped the frequency domain approach since it showed
much worse performance than the other approaches in the
previous experiments.

Regardless of the used methods, the final SIRs were
smaller than those for the simulated mixtures in Fig. 5.
That may be not only because the real mixing environment
could be much more difficult to separate signals than the
simulated mixing, but also because we used different
signals for separation and measuring the SIRs. Moreover,
it may give an important reason that recorded signals
contain artifacts, such as measurement noise and non-
linearity of equipment, which obstruct exact estimation of
adaptive filter coefficients. Above all, note that the learning
curves of the proposed filter bank approach showed faster
convergence than those of the time domain approach like
in the previous subsection in terms of both the SIRs and
SNRs. The difference between SIR and SNR values is due
to many noise components as we mentioned in SNR
definition.
We repeated the blind source separation experiment on

three recorded mixtures to estimate three source signals.
Fig. 11 describes position of speakers and microphones.
We performed this experiment in the same way as the
previous one except that a 3� 3 mixing/unmixing system
has been treated. Therefore, SIR and SNR had to be
extended as

SIRðdBÞ ¼ max
fsðjÞ;j¼1;2;3g

1

3

�
X3
j¼1

10 log
hðuj;ssðjÞ ðnÞÞ

2
iP3

i¼1;iasðjÞuj;si
ðnÞ

� �2� �
0
BB@

1
CCA ð36Þ

and

SNRðdBÞ � max
fsðjÞ;j¼1;2;3g

1

3

�
X3
j¼1

10 log
hðuj;ssðjÞðnÞÞ

2
i

hðujðnÞ � uj;ssðjÞðnÞÞ
2
i

 !
, ð37Þ

where fsðjÞ; j ¼ 1; 2; 3g denotes a permutation of indices so
that six values were compared to choose the maximum for
the SIR and the SNR.1

Learning curves of the blind source separation problem
are presented in Fig. 12. The measured performance was
worse than that in the previous experiment since we have
recorded more mixtures in a more complex mixing
environment. Except the absolute measured values, the
results were consistent with those of the problem to
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estimate sources from two recorded mixtures. Since a
subband covers somewhat broad band, the SIRs as well as
the SNRs would be severely degraded with wrong
permutation even in one subband. Therefore, the results
certified that the ICA indeterminacy for the filter bank
approach has been successfully resolved.
6. Conclusions

In this paper, we proposed a filter bank approach to
perform ICA for convolved mixtures. The filter bank
approach achieved a much better performance than the
frequency domain approach and faster convergence speed
with less computational complexity than the time domain
approach. By proposing a modification of the Murata’s
method, we resolved the permutation and scaling problems
of the filter bank approach and showed its successful
working through simulations. Furthermore, the designed
filter bank required shorter unmixing filter length and less
computational load than those in other filter bank
approaches.
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