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Abstract

We present a �lter bank (FB) approach to perform independent component analysis for adap-
tive noise cancelling. This approach is based on FBs, and its decimation provides much less
computational complexity and faster convergence speed than the time-domain approach. In addi-
tion, the approach does not have a performance limitation unlike the frequency-domain approach.
One can select the number of �lters in the FB regardless of reverberation and implement the
method to �t for parallel processing. We verify the e5ectiveness of the FB approach through
simulations on adaptive noise cancelling.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Independent component analysis (ICA) is a linear transform of multivariate data to
make the resulting random variables as statistically independent as possible [2,3]. Most
of ICA algorithms for convolved mixtures can be categorized into the time-domain
and the frequency-domain approaches [2,5,6]. The time-domain approach requires in-
tensive computations for long reverberative mixtures and shows slow convergence
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especially for colored input signals [7]. The computational load can be reduced by
the frequency-domain approach, in which multiplication at each frequency bin re-
places convolution operation in the time domain. However, the performance of the
frequency-domain approach is limited. A long frame size is required to cover a long
reverberation, whereas the number of learning data in each frequency bin decreases
as the frame size increases [1]. In this letter, we propose a �lter bank (FB) approach
to overcome these disadvantages of the time-domain and the frequency-domain ICA
approaches, and apply it to adaptive noise cancelling.

2. A FB approach to ICA

Fig. 1 shows a 2×2 network for the oversampled FB approach to ICA. Input signals
which are mixtures of unknown independent components are split into subband signals
by analysis �lters Hk(z); k = 0; 1; : : : ; K − 1. Then, each subband signal is subsampled
by factor M . In each subband, these subsampled signals are independently processed
by a usual ICA algorithm. Finally, independent components are expanded by M and
reconstructed through synthesis �lters Fk(z); k =0; 1; : : : ; K − 1 after �xing permutation
and scale. Due to band-limited characteristics of the oversampled FB, signals in each
subband may be subsampled without aliasing error for computational eGciency.
Since critically sampled FBs require additional cross adaptive �lters or spectral gaps,

we adopt oversampled FBs in which aliasing is negligible by using �lters with high
stopband attenuation [7]. To implement uniform complex-valued oversampled FBs, we
obtain analysis �lters hk(n) from a real-valued low-pass prototype �lter q(n) by a
generalized discrete Fourier transform (GDFT)

hk(n) = ej(2�=K)(k+1=2)(n−(Lq−1)=2) q(n);

k = 0; 1; : : : ; K − 1; n= 0; 1; : : : ; Lq − 1; (1)

where Lq is the length of q(n). The prototype �lter can be designed by iterative
least-squares algorithm with a cost function which considers reconstructiveness and
stopband attenuation [7].
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Fig. 1. A 2× 2 network for the oversampled FB approach to ICA.
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When we perform ICA in the oversampled FBs, adaptive �lter coeGcients in each
subband can be adjusted without any information of the other subbands due to negligi-
ble aliasing of the FBs. Thus, the approach is appropriate to parallel processing. Filter
coeGcient normalization and envelope correlation method may be incorporated to �x
scale and permutation problems, respectively [5].
The ICA algorithm in each subband is basically the same as the time-domain

approach. As an ICA network in each subband, a feedforward architecture may be
considered as

ui(n) =
N∑

j=1

K−1∑

k=0

wij(k)xj(n− k); (2)

where adaptive �lters wij(k) supposedly make outputs ui(n) reproduce the original
independent components. With complex-valued data, entropy maximization algorithm
provides learning rules of the adaptive �lter coeGcients as

JW(0)˙ [WH(0)]−1 − ’(u(n))xH(n);

Jwij(k)˙ −’(ui(n))x∗j (n− k); k �= 0; ’(ui(n)) =−9p(ui(n))=9ui(n)
p(ui(n))

; (3)

where W(0) is a matrix composed of zero-delay weights, and u(n) and x(n) de-
note a set of estimated independent components and the observation vector, respec-
tively. H denotes Hermitian transposition. ’(·) is called as a score function, and
p(ui) denotes the probability density function of ui. Since ICA in each subband is
based on the time-domain approach, the FB approach does not have the problems of
the frequency-domain approach due to block processing. In addition, it improves the
convergence speed because input signals are more whitened by decimation than the
time-domain approach. Since the unmixing �lter length becomes reduced by a factor
1=M for decimated input signals with a decimation factor M and the input signals are
processed at the subsampled rate in each subband, computational complexity is consid-
erably reduced for a long adaptive �lter length. With a K-channel oversampled FB, the
number of multiplications for the FB approach is approximately 2K=M 2 times as large
as that for the time domain approach. Furthermore, the approach is able to choose the
number of subbands regardless of reverberation.

3. Adaptive noise cancelling based on the FB approach

Adaptive noise cancelling is an approach to reduce noise based on reference signals
[4]. In conventional adaptive noise cancelling systems, the primary input signal is a
combined signal and noise c(n)=s(n)+r0(n), and the reference signal is a noise signal
r1(n) through another channel from the same noise source. Although the most popular
algorithm for noise cancellation is least-mean-squares algorithm, the performance can
be improved by ICA, which adapts as [4]

Jw(k)˙ ’(u(n))r1(n− k); where u(n) = c(n)−
K∑

k=1

w(k)r1(n− k): (4)
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Fig. 2. Learning curves of the three di5erent approaches to adaptive noise cancelling.

The FB approach to ICA can be applied to the adaptive noise cancelling system. In
this case, noise components in the primary input signal are cancelled using the refer-
ence input signal, and the desired signal is observed in the output without distortion.
Therefore, it does not have the permutation and scaling problem which ICA generally
has.

4. Experimental results

We have performed experiments on the adaptive noise cancelling with the proposed
FB approach. Two real-recorded speech data were used as the signal and the noise
sources. Each signal had 10 s length at 16 kHz sampling rate. Since speech signal
approximately follows Laplacian distribution, sgn(·) was used as the score function.
Experimental results were compared in terms of signal-to-noise ratio (SNR), which we
de�ne as the power of components caused by the signal source versus that caused by
the noise source at the output u(n),

SNR =
〈(s(n))2〉

〈(r0(n)−
∑K

k=1 w(k)r1(n− k))2〉
: (5)

The mixing �lters from the signal source to the primary input and from the noise source
to the reference input were simple linear scales. The scale values were chosen to obtain
desired initial SNRs. For the mixing �lter from the noise source to the primary input,
we have used a measured �lter in a normal oGce room as shown in [4].
Fig. 2 shows a learning curve of the proposed FB approach. We have used an

192-tap eight-channel oversampled FB with alias-free decimation factor M = 6. These
parameters are chosen after simulations with various parameter values. The adaptive
�lter length was �1024=M� in each subband. For comparison, we have also applied the
time-domain approach (corresponding to the method in [4]) and the frequency-domain
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approach. 1024 adaptive �lter coeGcients were used for the time-domain approach.
In the frequency-domain approach, the frame size was 8192, and the frame shift was
a half of the frame size. SNRs of the frequency-domain approach are much lower
than those of the others and the FB approach has much faster convergence speed
than the time-domain approach, as we insisted on the advantages of the FB approach.
Experiments for a car and a music noise showed the same tendency.

5. Conclusions

In this letter, we proposed a uniform oversampled FB approach to perform ICA
for adaptive noise cancelling. The approach provides a much better performance than
the frequency-domain approach and faster convergence speed than the time-domain
approach with much less computational complexity.
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