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Abstract: Perception of symmetric image patterns is one of the important stages in visual
information processing. However, local interference of the input image disturbs the
detection of symmetry in ANN (Artificial Neural Network) based models. In this paper,
we propose a noise-robust neural network model that can correct asymmetric
corruptions and returns clear symmetry axes.
For efficient detection of bilateral symmetry as well as asymmetry correction, our
network adopts directional blurring filters. The filter responses are fed to oscillatory
neurons for line extraction, which serializes the activation of multiple symmetry axes.
Given an activated symmetry axis, the network estimates the difference of counterparts
to generate a masking filter that covers the asymmetric parts. The network reconstructs
the ideal mirror-symmetric image with complete symmetry axes by self-correction of
corruptions. Through simulations on corrupted images, we verify that our network is
superior to Fukushima's symmetry detection network. Our network successfully
presents biologically plausible and robust symmetry perception mechanism.

Response to Reviewers: Reviewer #1: This paper proposes a noise-robust neural network model that can
correct asymmetric corruptions and returns clear symmetry axes. The paper uses
directional blurring filters for symmetry axis detection and asymmetry correction. The
paper is well organized and interesting. The paper can be accepted after the revisions.

1) In Abstract, the authors claim that the network successfully presents biologically
plausible and robust symmetry perception mechanism. However, I seem not to see the
point. The authors should pointed out in the text or cite some references about the
points.

=> The whole process of symmetry detection are expressed in terms of parallelized
neural computation in artificial neural networks (ANN). And the early layer of the
proposed model approximates Photoreceptor cell and LGN in human visual system.
We added the explanations in the third paragraph of section 1 (page 2) and the first
paragraph of section 2.1.1 (page 3), respectively.
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2) Some latest references should be cited.

=> We thoroughly revised the literature survey on symmetry detection algorithms in
 Introduction and added more references in late 2000’s and 2010’s.

Reviewer #2:   The authors propose a noise-robust neural network model that can
correct asymmetric corruptions and returns clear symmetry axes. For efficient detection
of bilateral symmetry as well as asymmetry correction, the network adopts directional
blurring filters. The filter responses are fed to oscillatory neurons for line extraction,
which serializes the activation of multiple symmetry axes. Through simulations on
corrupted images, they verify that the proposed network is superior to Fukushima's
symmetry detection network.
 The contents of this paper is good, the proposed idea sounds excellent, the
mathematics in this paper no problem, the authors should consider the following
questions before the paper can be accepted in NEPL.

1: The authors should give more theory explanations that the proposed directional
blurring filters in section 2.

=> We added the following explanation on the last paragraph in section 2.1.2 (page 4.)
 “The set of sliced-cone filters is rotation-invariant that it can be used to detect any
direction of symmetry axis. The shape of long and thin slice is advantageous to detect
and re-locate asymmetric parts. And it covers the entire local region of all directions,
unlike simple line-shaped filters.”

2: What is the mean of formula of (11) in 2.2.2 ?

=> Equation (11) means that the mask M(m, n) is the accumulation of back projection
B_P and lateral inhibition B_I. We thoroughly changed section 2.2.2 (page 6 and 7) and
figure 4 (page 7) to explain equation (11) better.

3: There some typos and grammar mistakes in this paper, the authors should correct
them carefully.

=> We double-checked the spelling errors and grammar mistakes.

Reviewer #3: In this paper, a noise-robust neural network model that can correct
asymmetric corruptions and returns clear symmetry axes is proposed. For efficient
detection of bilateral symmetry as well as asymmetry correction, the ANN proposed in
this paper adopts directional blurring filters. The simulations on corrupted images verify
that the network is superior to Fukushima's symmetry detection network. My detailed
comments are as follows:

1. The paper is well organized and well written.

=> Thanks for your good comments.

2. This paper is a continuation of literature [15], however, the authors should point out
the creativity in contrast with literature [15].

=> The advantage of our model over Fukushima’s network is described in the fourth
paragraph in section 1 (page 2). It is summarized in the first paragraph of section 2
(page 2 and 3) and explained again throughout section 2.
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3. There are some typos and grammar mistakes in the paper, please check it carefully.

=> We double-checked the spelling errors and grammar mistakes.

4. The style of the references should be right according the templates, and the
references are too old.

=> We corrected the reference style, and also added more current literature.

Sum up the above comments, I think the paper is resubmitted after some revisions.
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1 Introduction

Symmetries are everywhere; it is easily found in both natural scenes and man-made
structures. We perceive symmetric patterns more intuitively than those that are
not. Scientific studies prove that mammals prefer symmetric patterns to asym-
metric patterns in terms of visual perception [5, 6, 15, 23]. Also, it is known that
utilizing symmetry information in computers does help understanding of images
as well [9, 21]. Symmetry detection has been successfully used for practical appli-
cations such as face detection [25,27], shape matching [22], and urban scene figure
groupings [18], as well as biological modeling of visual selective attention [8].

There are mainly two approaches in bilateral symmetry axes detection. One is
to take mathematical algorithms and the other is to adopt biological mechanisms.
Many of methods in the algorithmic approach use local feature descriptors [13,16]
to detect symmetric patterns in images [3,14]. Compared to pixel-wise comparison
method [1], local descriptor-based methods substantially speed up the detection
process by reducing the number of symmetry axis candidates. In addition, re-
cent works advance to detect symmetric axes from curved [2, 12], skewed [10, 11],
or three-dimensional patterns [26]. This approach concentrates on the aspect of
practical usage.

On the other hand, the second approach considers biological plausibility of
the model; the whole process of symmetry detection are expressed in terms of
parallelized neural computation in artificial neural networks(ANN). The scope of
our work also lies within this approach. Spatial filter responses [4, 17] are com-
monly used for feature extraction. Poirier and Wilson [20] presented symmetry
perception model based on their previous model of shape perception in visual cor-
tex [19]. Fukushima [7] successfully demonstrated a fast and reliable symmetry
axis detection network.

Although various symmetry axis detection methods have been studied, they
do not work well when asymmetric corruptions exist. Correction of asymmetries is
significantly important for robust symmetry axes detection. In order to solve this
problem, we propose an ANN model that provides robust symmetry axes detec-
tion and is able to correct asymmetries by itself. We first detect symmetry axes by
comparing filter responses of counter parts. By utilizing directional filters, we are
informed of in which direction there exists strong asymmetries. Oscillator alterna-
tively activates one symmetry axis by one, and corrects asymmetries by masking
them with back projection of asymmetric measure provided in filter responses. As
a result, image with perfect symmetry is returned with clear symmetry axes.

Rest of the paper is organized as follows. In section 2, we describe our neu-
ral network model for symmetry detection. In section 3, experimental results are
presented. We close our paper with conclusion in section 4.

2 Method

The proposed network consists of two parts. In Part 1, symmetry axes are detected,
and in Part 2, asymmetry is self-corrected. The overall structure of proposed net-
work is described in Fig. 1. There are mainly three contributions in our network.
First, we propose directional blurring filters for symmetry axis detection and asym-
metry correction. Second, we adopt oscillatory network to serialize symmetry axis
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Fig. 1: The architecture of self-correcting symmetry detection network

activation for back projection of asymmetries. Third, we extend symmetry axis
detection network to asymmetry correction with aid of oscillatory network.

2.1 Part 1 - Symmetry Axis Detection

2.1.1 Edge Extraction (UG and US layer)

Part 1 resembles much of the process in [7]. Input image is introduced to layer of
photoreceptors, U0. It proceeds to layer of lateral geniculate nucleus cells (LGNs),
UG, for extracting positive and negative contrast by off-center-on-surround cells

and on-center-off-surround cells, respectively. UG layer returns U
(k)
G (m,n), where k

is the index for off-center (k = 1) and on-center (k = 2) cell-plane, and (m,n) is the

image coordinate. From U
(k)
G (m,n), we detect directional edges in US layer, which

returns U
(k)
S (m,n). In contrast with [7], we have an additional layer, UsumS (m,n) =∑K

k=1 U
(k)
S (m,n), which sum up the edge information altogether.

2.1.2 Sliced-Cone Filtering (UC Layer)

For symmetry axis detection, our proposed network uses directional blurring filters,
named as ’sliced-cone filters.’ While [7] applies cone filters to blurred edges of each
direction, our sliced-cone filter itself possesses directional property. Therefore, we
do not need edge blurring in each direction in US . Instead, we use summation of
orientational edges, UsumS (m,n).

The sliced-cone filter of kth direction ak = 2πk
K is defined by

F
(k)
SC (m,n) = F

(k)
S (m,n)× FC(m,n), (1)
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F
(k)
S (m,n) =

{
1 if |atan2(n,m)− ak| ≤ π

K and 0 <
√
m2 + n2 < L

0 otherwise
(2)

FC(m,n) =
ϕ(L−

√
m2 + n2)

L
(3)

Here, (2) is slice filter of direction ak, and (3) is cone filter of radius L, where
ϕ(α) = max(α, 0). Sliced-cone filter is generated by diving a cone into K radial
slices. Each slice is assigned a directional angle for detecting edges in corresponding

directions. Sliced-cone filter returns filter response U
(k)
C (m,n) as defined below.

U
(k)
C (m,n) =

L∑
n′=−L

L∑
m′=−L

F
(k)
SC (m′, n′)× UsumS (m+m′, n+ n′). (4)

The set of sliced-cone filters is rotation-invariant that it can be used to detect
any direction of symmetry axis. The shape of long and thin slice is advantageous
to detect and re-locate asymmetric parts. And it covers the entire local region of
all directions, unlike simple line-shaped filters.

2.1.3 Symmetry Axis Detection (UH and UX Layer)

To determine symmetry axis, we compare left and right side of an axis. We take
the same approach here as in [7]. Given a symmetry axis candidate at position
(m,n) and orientation ak, we compare sliced-cone filter responses of direction

ak+i and ak−i for i = 1, 2, . . . ,K/2. If all pairs of filter responses U
(k+i)
C (m,n)

and U
(k−i)
C (m,n) are equal, the candidate is regarded as symmetry axis. This

process is described in Fig.2.

In UH layer, we calculate symmetry measure of axis orientation ak at point
(m,n) of image as,

U
(k)
H (m,n) = ϕ(

K/2∑
i=1

[γi (U
(k+i)
C (m,n) + U

(k−i)
C (m,n))︸ ︷︷ ︸

summation term

−δ |U (k+i)
C (m,n)− U (k−i)

C (m,n)|︸ ︷︷ ︸
difference term

]).

(5)
Here, γi = Γ min( 4i

K , 2−
4i
K ) and two variables δ and Γ are constant.

Symmetry axis is detected by acquiring the common parts of filter responses

U
(k+i)
C (m,n) and U

(k−i)
C (m,n). We subtract the difference term from the sum-

mation term to leave the commons of the two filter responses. To reduce false
positives of symmetry axis for small i, γi is maximized when ak+i and ak−i are
perpendicular to ak and minimized when they are parallel to ak.

The output of the Part 1 UX(m,n) = max
k

U
(k)
H (m,n) displays detected sym-

metry axes. Individual neurons may generate noise. However, activated neurons
on a long line reliably represent local mirror-symmetry.
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Fig. 2: Symmetry axis detection process. Black lines indicate given symmetry axis
candidates with angles of ak (k = 1, 2, ..., 36). Colored pairs of lines with same
colors indicate pairs of directions of sliced-cone filters with angles of ak+i and
ak−i, to verify the symmetry of given axis (black line)

2.1.4 Oscillatory Network

To correct asymmetries, we generate masks by back projection of asymmetric
filter response on the symmetry axis. We use locally-excitatory globally-inhibitory
oscillator networks (LEGION) [24] and mutual excitatory connectivity between
co-linear edge pixels for sequential activation of symmetry axes.

To understand how we detect and activate an axis, imagine two edge pixels ei
and ej as in Fig. 3. Here, θi, θj , and θij denote the orientation of edge pixels ei and
ej , and line eiej , respectively. The distance between two edge pixels is denoted as
dij . The angle between each edge pixel and line eiej is defined as φij = D(θi−θij)
and φji = D(θj − θij). We use a function D(θ) = θ − b θπ + 0.5cπ to convert angle
into the range of [−π2 ,

π
2 ), where bxc is the round down value of x.

We detect straight lines based on the closeness and co-linearity between two
edge pixels, using excitatory connection wij = fd(dij)fl(φij , φji) and inhibitory
connection vij = ginhfd(dij). The term fd(dij) and fl(φij , φji) denote distance
factor and linearity factor, respectively. They are computed as

fd(dij) =


(
σd

dij

)2
if dij > σd,

1 otherwise
, and (6)

fl(φij , φji) =

{
cos b (|φij |+ |φji|) if b (|φij |+ |φji|) ≤ π

2 ,

0 otherwise
, (7)

where b is a constant. The neurons that are close together and appear on a straight
line score high value for excitatory connection wij .

The total connection from neuron i to neuron j is wij−vij = fd(dij)(fl(φij , φji)−
ginh), where ginh is a threshold parameter that controls neurons’ activation.

Oscillator X(k)(m,n) represents the activity of the symmetry axis with orien-

tation ak and position (m,n). It receives external input U
(k)
H (m,n). The network

generates alternate activation of symmetry axes. (See [24] for the details).

2.2 Part 2 - Asymmetry Reconstruction and Correction

Sequentially activated symmetry axis is fed to Part 2 for asymmetry reconstruction
and correction.
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Fig. 3: Two edge pixels.

2.2.1 Asymmetry Reconstruction

Given one activated symmetry axis, we calculate back projection coefficient for
each of neurons on the symmetry axis. It is computed from the difference term

in (5). If oscillator X(k′)(m,n) is activated, we compare filter response U
(k)
C (m,n)

and its counter part U
(k′′)
C (m,n), which satisfy k′′ = mod(2k′−k−1,K)+1; they

correspond to U
(k+i)
C (m,n) and U

(k−i)
C (m,n) in (5), respectively. The bilateral

difference accumulates to the back projection coefficient B
(k)
C (m,n).

B
(k)
C (m,n) =

K∑
k′=1

A(k′)(m,n)× ϕ
(
U

(k)
C (m,n)− U (k′′)

C (m,n)
)
. (8)

In (8),

A(k)(m,n) =

{
1 if X(k)(m,n) ≥ Θx,
0 otherwise

(9)

is the discretized neural activity X(k)(m,n) with threshold Θx.

Sliced-cone filters F
(k)
SC (m,n) project back B

(k)
C (m,n) and reconstruct asym-

metric parts. Sliced-cone filters F
(k)
SC (m,n) reconstruct asymmetric parts by back

projection with coefficient of B
(k)
C (m,n). The process is described in Fig. 4 (b).

The back projection result BP (m,n)(see Fig. 4 (c)) is

BP (m,n) =
K∑
k=1

L∑
n′=−L

L∑
m′=−L

F
(k)
SC (m′, n′)×B(k)

C (m+m′, n+ n′). (10)

2.2.2 Asymmetry Correction

To correct asymmetries, we generate a mask M(m,n) (see Fig. 4 (d)) by accumu-
lating back projection coefficient BP (m,n) with lateral inhibition BI(m,n).

M(m,n)← ψ [M(m,n) + µ (BP (m,n)−max (ηBI(m,n), ε))] . (11)

In this equation, ψ [α] = max(min(α, 1), 0) is a clipping function. The lateral
inhibition is defined as

BI(m,n) =
K∑
k=1

L∑
n′=−L

L∑
m′=−L

(
FC(m′, n′)

)2 ×A(k)(m−m′, n− n′). (12)



7

As an asymmetric image pixel gets closer to the symmetry axis, it receives stronger
back-projection (Compare the left and the right side in Fig. 4 (c)). The inhibition
term BI(m,n) compensates for the spatial irregularity and eliminates the local
blurring artifacts of back projection.

The mask is applied to UsumS (m,n) by

UsumS (m,n)← (1−M(m,n))UsumS (m,n). (13)

UsumS (m,n) is recurrently updated in a way that asymmetries are removed.

(a) (b) (c) (d)

Fig. 4: (a) Asymmetry part with respect to given symmetry axis, (b) back projec-

tion of B
(k)
C (m,n) by sliced-cone filter F

(k)
SC (m,n), (c) accumulated back projec-

tion, BP (m,n), (d) generated mask, M(m,n)

3 Experimental Results

To verify noise-robust symmetry axis detection and asymmetry correction ability
of our proposed network, we generated some corruptions or noises in the images
provided by Fukushima [7]. We used 16 input images of binary alphabetical char-
acters or gray scale patterns as shown in Fig. 5 (a). The size of each image is
79× 79. We combined filters of two different scales L = 25 and 50 for more accu-
rate symmetry detection. We set the number of orientation K = 36. For calculation

of U
(k)
H (m,n) in Eq. (5), we used γ1 = 1.2

π , and δ = 5. For mask generation in
Eq. (11), we used µ = 0.003, η = 0.6, and ε = 1.0. For fast simulation of oscillatory
network, we implemented simplified algorithm of LEGION in [24]. We used two
types of noises: lines and ellipses. We limited the length of line and the major
/ minor of ellipse noises to be in range of 10%-20% of input image diagonal. To
observe symmetry axis detection performance change with respect to the degree of
corruptions, we increased the number of noises from 1 to 4. For more reliable anal-
ysis, we generated 10 random noise samples for each cases. An example of image
with line and ellipse noises of 1 to 4 is shown in Fig. 5 (b) and (c), respectively.

An example of the experimental data with noise is displayed in Fig. 6. Fukushima’s
network fails to detect all of the symmetry axes as shown in (g). However, in (b),
our proposed network detects weakly activated symmetry axes at first, and then
by back projection, asymmetries are corrected successfully by mask generated in
(d). Proposed network returns corrected image along with clear symmetry axes in
(e) and (f), respectively.
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(a)

(b) (c)

Fig. 5: (a) Input images, (b) example of an image with line noises, and (c) ellipse
noises

Fig. 6: (a) Input image corrupted with 4 noises of line and ellipse noises, and
UsumS (m,n), (b) symmetry axes detected before oscillatory network, UX(m,n),
(c) serially activated symmetry axis by oscillatory network, (d) image mask and
(e) self-corrected image with respect to activated symmetry axis, (f) accumulation
of neural activity in oscillator network (returned symmetry axes after oscillator),
and (g) symmetry axes detected by Fukushima’s network [7]
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(a) (b)

Fig. 7: Averaged F values of 16 images with 10 samples for each, for (a) line
noises, and (b) ellipse noises

3.1 Evaluation of Symmetry Axis Detection

For quantitative analysis of symmetry axis detection performance, we evaluated
the result with F-measure: F = 2 × precision×recall

precision+recall , where precision = TP
TP+FP ,

and recall = TP
TP+FN , TP=true positive (number of correctly detected pixels),

FP=false positive (number of falsely detected pixels), and FN=false negative
(number of missing pixels). When the result of symmetry axis detection is not bi-
nary as in Fukushima’s model [7], we calculated F-value with respect to increasing
thresholds and selected the maximum value. We compared the average F-measure
of our result before correction (initial UX(m,n)), our result after correction (ac-
cumulated activity of neural oscillator), and Fukushima’s network result in Fig. 6
(b), (f), and (g), respectively. As noise increases, proposed network shows less
performance drop compared to Fukushima’s. This shows that proposed network
performs more robust against corruption.

3.2 Evaluation of Asymmetry Correction

In this section, we analyze asymmetry correction performance of our proposed
network in quantitative manner. An example of asymmetry correction results is
shown in Fig. 8. Fig. 8 (f) is the ideal mirror symmetry image that can be obtained
by optimal masking of noisy UsumS . Fig. 8 (e) resembles much of the ideal symmetry
image in (f). Provided that the network detects appropriate symmetry axis in
(c), the proposed network successfully reconstructs asymmetry masks in (d) and
returns symmetry images.

We introduce two measures for the asymmetry correction performance: Asym-
metry Correction Rate (ACR) and Symmetry Distortion Rate (SDR). Assume an
input image Ii(m,n), its ideal symmetric correction IG(m,n), and self-correction

of input Ic(m,n). ACR is defined as 1−
∑

m,n φ(Ic(m,n)−IG(m,n))∑
m,n(Ii(m,n)−IG(m,n)) . SDR is the pro-
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Fig. 8: Self-correction examples. (a) Corrupted input image, (b) UsumS (m,n), (c)
detected symmetry axis, (d) mask and (e) corrected image with respect to sym-
metry axis in (c), and (f) mirror-symmetry image with respect to ground-truth
symmetry axis of same direction as (c)

Table 1: ACR and SDR of line/ellipse noises

Number of Line noises Ellipse noises
noises ACR SDR ACR SDR

1 0.5774 0.0112 0.6782 0.0116
2 0.5344 0.0107 0.6253 0.0130
3 0.5700 0.0093 0.6175 0.0119
4 0.5184 0.0118 0.6599 0.0156

portion of symmetry part that has been accidentally removed by the network out

of perfect symmetries, which is calculated by SDR =
∑

m,n φ(IG(m,n)−Ic(m,n))∑
m,n IG(m,n) .

For easier comparison of IG(m,n) and Ic(m,n), we selected images that have
either vertical or horizontal or both as ground-truth symmetry axes (Image 1-7,
11-12, and 14-16 of Fig. 5 (a) ).

To observe pure asymmetry correction ability regardless of symmetry axis de-
tection performance, we only considered the reconstructed outputs from success-
fully detected symmetry axes that shares more than 50% similarities with the
ground-truth axis.

The experimental result is summarized in table 1. Proposed network corrects
asymmetries induced by ellipse noises better than line noises, while maintaining
SDR as low as less than 1%. The proposed network successfully corrects asym-
metric parts while retaining symmetric parts intact.

3.3 Discussion

Our network is mainly composed of symmetry axis detection and asymmetry cor-
rection. The performance of the whole process depends on the initial detection of
symmetry axes. If the network fails to detect even a weak activation of symmetry
axes, the proceeding stages can neither correct asymmetries nor return clarified
axes. This emphasizes the important role of directional filtering in the initial stage.
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While directional blurring filters enable reconstruction and correction of asym-
metry, they are sensitive to slight deviation of symmetry axes. When the angle of
symmetry axis lies in-between the angles of directional filters, network often failed
to detect them. We might reduce the sensitivity by increasing the number of di-
rectional filters or adopting circular blurring filters as in Fukushima’s network [7].

The performance of asymmetry correction is not always stable and accurate.
It sometimes leaves artifacts on the image and masks empty spaces. Further op-
timization of directional filter shape and mask generation method remains as a
further work.

4 Concluding Remarks

In this paper, we proposed a biologically plausible symmetry detection network
that can correct asymmetries by itself. We used directional blurring filters for sym-
metry axis detection and asymmetry correction. Oscillatory neurons activate one
symmetry axis at a time, and the network corrects asymmetries by back projection
of asymmetry measure with respect to activated axis. Through experiments with
corrupted images of various cases, we verified that our proposed network success-
fully detects symmetry axis against strong asymmetric corruptions. In addition,
proposed network corrects asymmetric parts and returns mirror-symmetry image
with clearly reconstructed symmetry axes. The extended function of asymmetry
correction opens more chances for practical applications in real environments.
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