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Abstract. In this paper w e  propose a batch learning algorithm for 
sequential blind extraction of arbitrary distributed but generally 
not i.i.d. (independent identically distributed) temporally corre- 
lated sources, possibly dependent speech signals from from linear 
mixture of them. The proposed algorithm is computationally very 
simple and efficient, it is based only on the second order statistics 
and in contrast to the most known algorithms developed for the 
sequential blind extraction and independent component analysis, 
do not assume statistical independence of source signals neither 
non-zero kurtosis for the sources, thus statistical dependent sig- 
nals including sources with extremely low or even zero kurtosis 
(colored Gaussian with different spectra) can be also successfully 
extracted. Extensive computer simulation confirm the validity and 
high performance of the proposed algorithm. 

INTRODUCTION 

Recently there was an increase of interest in blind signal processing, espe- 
cially, instantaneous blind source separation and related problem indepen- 
dent component analysis (ICA) due to potential applications in many areas, 
including speech enhancement, rotating machine vibration analysis and diag- 
nosis, geophysical data processing, data mining, wireless communication and 
biomedical signal processing [l-181. Most the known and efficient techniques 
assume that primary sources are statistically independent, however in many 
applications the sources are not completely independent and developed IC A 
algorithms may fail to extract signals of interest. In this paper we assume 
that sources can be statistically dependent or highly correlated but they have 
various temporal structures. 
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For our purposes, the problem of blind source separation (BSS) and blind 
source extraction (BSE) can be formulated as follows: we observe sensor 
signals x (k) = [XI (k) , . . . , 2, (k)IT described by matrix equation: 

x (k) = As (k) + n (k) , (1) 

where A is naxn full-rank unknown mixing matrix, s (k) = [SI ( I C )  , . . . , s, 
(n 5 m) is a vector of unknown temporally correlated sources (with different 
autocorrelation) and n(k) is a vector of additive white (i.i.d.) noise. The 
objective is to estimate all primary source signals (BBS problem) or extract 
some of them sequentially one-by-one (BSE problem) assuming that they are 
non i.i.d. temporally correlated with different autocorrelation functions. 

In this paper we assume that ‘interesting’ source signals, (which should be 
estimated) have specific temporal structures and can be modeled by unknown 
stable autoregressive models [l, 13, 31 (see Fig.1) as: 

M 
s,(k) = &(A) - atps,(k - p )  = &(k) - A,(z )s , (k) ,  (2) 

p= 1 

where S,(k) is i.i.d. (white) innovative process and s,(k) are signals to be 
estimated. To such category belong natural speech signals and some biomed- 
ical signals. Temporal structures of sources can be modeled by more general 
means, e.g. using ARMA (autoregressive moving average) process or HMM 
(Hidden Markov Model) which would be able to  represent high-order tempo- 
ral statistics and facilitates EM learning [l, 21. 

There are in general two approaches for estimating the source signals: the 
simultaneous blind source separation approach and sequential (one by one) 
blind extraction. In the blind source separation (BSS) approach a neural 
network and associated learning algorithm performs separation of all sources 
simultaneously, while in the blind source extraction (BSE) the sources are 
extracted on-by-one by eliminating the already extracted sources from their 
mixture by using deflation techniques. Blind signal extraction approach has 
several advantages over simultaneous blind source separation: like global 
convergence (avoiding spurious equilibrium points), relative low complexity of 
learning algorithms, especially when the number of sources is large, extraction 
only of signals of interest with stochastic specific features [6 ,  10, 8, 111. 

The main objective of this paper is to  present a simple linear processing 
element and associated new and efficient batch learning algorithm for BSE 
of temporally correlated, arbitrary distributed but generally non i.i.d. (not 
independent identically distributed), i.e. E {s, (k - p )  s, (k)} # 0 for some 

Most of the known and efficient algorithms for blind source extraction as- 
sume that sources are statistically independent, they are non-Gaussian and 
have non-zero kurtosis. Their performance and convergence for low value 
of kurtosis may be often poor [6, 7, 10, 81. Furthermore, those algorithms 
use typically higher order statistics and some nonlinear activation functions 

p ( p = 1 , 2  , ” . ,  L) .  
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whose optimal choice depends on the unknown distribution of sources. Espe- 
cially, some acoustic signals and biomedical source signals can be dependent 
and they can be characterized by extremely low value of normalized kurtosis 
and due to  nonstationarities their distribution may change in time. In this 
paper we propose a simple and efficient algorithm which avoids these prob- 
lems in the sense that it employs only second order statistics and enables 
to successfully extract non-stationary statistically dependent temporally cor- 
related sources and also sources with extremely low or even zero value of 
normalized kurtosis (colored Gaussian signals with different spectra). 

It should be mentioned that recently several researchers have developed 
a number of efficient algorithms for sequential blind source extraction, espe- 
cially works of Delfosse and Loubaton [7], Hyvarinen and Oja [lo], Malouche 
and Macchi [ll], Douglas and Kung [9] and Tugnait [15]. Moreover, the use 
of second statistics for BSS problem and problem of separation of temporally 
correlated sources has been discussed by Amari [l], Molgdey and Schuster 
[12], Pham and Garat [14], Belouchrani et al. [4], Pearlmutter and Parra 
[13], Choi and Cichocki [5]. However, our approach is different and it has 
some advantages that may not be found in others at the same time. It 
is computationally simple; it provides relative fast convergence; it extracts 
the components sequentially so that the user can decide in advance how 
many sources with specific stochastic properties should be extracted; does 
not assume non-zero kurtosis for the sources; does not need the sources to 
be stationary. Furthermore, the proposed algorithm is robust in respect to 
white additive noise what often leads to smaller errors (cross-talking between 
estimated sources). 

BLIND EXTRACTION OF A SINGLE SOURCE 

Let us assume for simplicity that we want to extract only one single source 
signal, say S j ( I C ) ,  from the available sensor vector x(lc). For this purpose we 
design a single processing unit described as (see Figs. 1 and 2): 

m 

Y1 ( I C )  = WTX ( I C )  = W l j Z j  ( I C )  , (3) 

E1 (IC) = Y1 (IC) - b l p Y l  (IC - P) 

j = 1  

L 

p= 1 

= WTX ( I C )  - b F Y 1  , (4) 
T 

where w1 = [wl, ~ 1 2 , .  . . , wlm] , 
Y i  = [YI ( I C  - 1) , Y I ( ~  - 2), . . . , ~ 1  ( I C  - L)IT, b 1 - - [ b l l , b 1 2 , .  . . , b ~ ]  , and 

T 

L 

p = l  
B 1  (z) = b ~ , z - ~  is a transfer function of the corresponding FIR filter. 

It should be noted that the FIR filter can have in a special case a sparse 
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Figure 1: Block diagram illustrating implementation of learning algorithm for blind 
extraction of a single temporally correlated source modeled by AR model. 

representation, i.e. only one single processing unit, say with delay p and 
bl, # 0 can be used instead of L delays. 
The processing unit has two outputs: yl(lc) which estimates the extracted 
source signals, and ~1 (IC), which represents an error, after passing the output 
signal yl(IC) by the FIR filter (see Fig. 2). 

Our objective is to estimate the optimal values of vectors w1 and bl,  
in such way that the processing unit extracts successfully one of the sources. 
This is achieved if the global vector defined as gl = ATwl = (wTA) = c3e3 
contains only one nonzero element, say in the j -th row, then y1 (k) = c3s3, 
where c3 is an arbitrary nonzero scaling factor. For this purpose we refor- 
mulate the problem as minimization of a cost function J (w1, bl)  = E { E : } .  

The main justification of applying such cost function is an assumption that 
primary sources signals (signals of interest) have a specific temporal struc- 
ture and can be modeled by the autoregressive model (2) and we want to 
estimate unknown innovative processes (and simultaneously identify the tem- 
poral structure and estimate the primarily sources s z ( t )  [l, 13, 31 (see Fig.1). 

T 

Derivation of Basic Learning Algorithm 

The cost function can be evaluated as follows: 

J(W1,bl) = E{&:}  (5) 
= WrRxxwl - 2wTRX9, b1 + bT&,y, bl ,  

where R,, 21 E { x x T } ,  R,,, N E { x y T }  and R F , ~ ,  N E{ylyT}, mean esti- 
mation of true values of covariance and cross-correlation matrices: R,,, R,?,, 
R Y , ~ , ;  respectively. In order to estimate vectors w1 and bl we evaluate the 
gradients of the cost function and equalize them to zero as follows: 
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Solving the above matrix equations we obtain an iterative algorithm 

w1 = R;3xg1b1, (8) 

bl = Rrl- Y l Y l  Rglxwl = Y l Y l  R- Ylm' (9) 

where the matrices Rglgl and Rglyl are estimated on basis of parameters 
w1 obtained in previous iteration step. 
Remark: It-should be emphasized here that in our derivation we have as- 
sumed that Rglj,l and Rglyl are independent of actual evaluated vector w1, 
i.e. they are estimated on value of wl(k - 1) in the previous iteration step. 
This two phase procedure is similar to  EM schemes: (i) freeze the covariance 
and cross-correlation matrices and learn the parameters of the processing 
unit (w1, bl);  (ii) freeze w1 and bl and learn new statistics (i.e. matrices 
Rglvl and Rglgl) of estimated source signal, then go back to (i) and repeat. 
Hence, in phase (i) our algorithm extract a source signal, whereas in phase 
(ii) it learns the statistics of the source. 

In order to avoid the trivial solution w1 = 0 we can perform the nor- 
malization of the vector w1 to unit length in each iteration step as w1+ = 
w1/ llwlll (what ensures that E{y:} = 1). 
The above algorithm can be considerably simplified. It should be noted that 
in order to avoid the inversion of autocorrelation matrix R,, in each iteration 
step we can apply as preprocessing the standard pre-whitening or standard 
PCA (principal component analysis) and next normalization of sensor signals 
to  unit variance. In such case Rxx M I, and the algorithm simplifies to 

WI = Rxj,lbl = Rxy, , (10) 

N L 

k = l  p=o  
where R,v Z k x (IC) jjl (k) and jjl = bTy1 = blpyl ( I C  - p) 

Remark: It should be noted that in order to reduce influence of additive 
white noise we can-perform whitening by diagonalizing instead of standard 
covariance matrix R,, = (x(k)xT (k)) the following covariance matrix 

1 
Rxx = - [(x(k)xT(k - A)) + ( ~ ( k  - A)xT(k))] = VAVT (11) 

with linear transformation x1 = Q x  = VTA-'I2x. hrthermore,  it is worth 
also to note that the learning rule (9) can be simplified as 

2 

if we use single delay units with time delay r = p with 1 5 p 5 L instead of 
FIR filter with lengths L. The above formulas (10) and (9) or (12) builds up 
our basic simplified learning algorithm. 

0-7803-6278-0/00$10.00 (C) IEEE 459 



Figure 2: The neural network structure for single processing unit. 

A length of FIR filter should be chosen sufficiently large but a value of 
L M 10 was enough in our experiments. However, as shown by our extensive 
computer simulations, in practice it is sufficient to use only a single time 
delay unit with suitably chosen delay T = p if some a priori information about 
temporal structure of source signals is available. The suitable choice of single 
time delay p can be determined form the characteristic pics in autocorrelation 
function of sensor signals [3]. Using different time delays T = p we able to 
extract different sources. However, we have not guarantee that we extract 
various signals for different time delays, thus to avoid this problem in general 
case we can apply deflation approach described in the next section. 

DEFLATION AND BLIND IDENTIFICATION OF MIXING MA- 
TRIX ALGORITHM 

We now describe a simple and efficient deflation procedure. After the suc- 
cessful extraction of the first source signal y1(k) - s j ( k ) ,  we can apply the 
deflation procedure which removes the previously extracted signals from the 
mixtures. Tlhis procedure may be recursively applied to extract sequentially 
the rest of the mixing source signals. This means that we require an on-line 
linear transformation [6] given by, 

Xi+l(k) = Xi(k) - i?iyz(k)  i = 1,2, .  . . , (13) 

where xl(k) = x(k) = [ z l ( k ) ,  . . . , x m ( k ) l T ,  which ensures minimization of 
the mean squares cost (loss) function 

Ji(i?;i) = E { x C , X ~ + ~ }  = 

E { x ? x ~ }  - Si??E(xiyi} + i?i;Ti?jiE{yf}. (14) 

Minimizaiion of this cost function with respect to Wi leads to a simple 
updating equation, 

where ii is, in fact, an estimated column of the mixing matrix A neglecting 
arbitrary scaling and permutation of columns ambiguities. It is worth to 
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Figure 3: Exemplary blind extraction of four sinusoidal signals for different time 
delays. 

noting that in special case when sensor signals are pre-whitened the above 
formula simplifies to Wi = ai  = w1 since in such case the mixing and de- 
mixing matrix are orthogonal, i.e. W = AT. The procedure can be continued 
until all the all source signals are recovered, that is, until the amplitude of 
each signal xi+l is below a preassigned threshold. It can be proved that this 
deflation optimization procedure has no spurious (undesired) minima and 
after the convergence the algorithm (15) estimates one column of the mixing 
matrix A with scaling and permutation indeterminacy. 

SIMULATION RESULTS 

We have extensively carried out many simulations where we synthetically 
mixed source signals and extracted them by the proposed algorithm. Due to 
limit of space here we show only two illustrative examples. 

EXAMPLE 1: In the first example we used ten sinusoidal signals s i ( k )  = 
sin [(2i + l)wok] where WO = 27r100 and i = 0,1, .  . . , 9 ,  that have been mixed 
by randomly generated mixed nonsingular matrix A. It should be noted the 
that sources are dependent. The autocorrelation functions of sensor signals 
have been plotted and suitable time delays ri = pi = (270,280,360,420,430, 
1000,1020,1620,2130) has been estimated on basis of picks of autocorrelation 
functions. The exemplary four mixed and extracted signals are depicted on 
Fig. 3. Since source signals are harmonic, there is also possibility to apply 
FFT to sensor signals to estimate time delays, but that approach is sensitive 
to phase shifts of source sinusoidal signals. 

EXAMPLE 2: In the second example three natural speech signals of 3 
different persons pronouncing simultaneously the same sentence (hello good- 
morning -in Polish language) have been mixed using randomly chosen nonsin- 
gular mixing matrix. The source signals are highly correlated and standard 
ICA algorithms provide rather poor performance. On basis of common picks 
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Figure 4: The autocorrelation functions of 3 mixed speech signals. 

of all autocorrelation functions we estimated the desired time delays (see 
Fig.4). Simulation results are shown in Fig.5. The original speech signals 
have been reconstructed very well. 

In fact, we found that the most of known ICA algorithms for the sequential 
blind signal extraction fail to separate successfully all such source signals 
because some of source signals are statistically dependent. However, second 
order statistics algorithms can do also such separation (see e.g. [ 5 ] ) .  

DISCUSSIONS AND CONCLUSION 

We have developed a batch efficient algorithm for sequential (one by one) ex- 
traction of sources with temporal structures. The algorithm is computation- 
ally simple; it provides relative fast convergence; it extracts the components 
sequentially so that the user can decide in advance how many sources with 
specific stochastic properties should be extracted; does not assume non-zero 
kurtosis for .the sources; does not need the sources to  be stationary neither 
statistically .independent. Furthermore, the proposed algorithm is robust in 
respect to white additive noise what leads to smaller errors (cross-talking 
between estimated sources). We have confirmed by extensive computer sim- 
ulations that the derived algorithm performs well when the source signals 
are temporally correlated even if they have very low value of the normalized 
kurtosis or even they statistically dependent. In more general, case, when 
some of ‘interesting’ source signals are i.i.d. signals we can switch between 
the fast and very efficient fixed point algorithm [lo] of Hyvarinen and Oja 
and a1gorith:m proposed in this paper in order to separate successfully and 
efficiently all desired sources. 
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Figure 5: Example 2 Blind extraction of dependent speech signals for different time 
delays: (a) in time domain, (b) in time-frequency domain. 

0-7803-6278-0~/00$10.00 (C) IEEE 464 


