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	Abstract

	Cross-entropy error function is widely used to train feed-forward neural networks, since it can accelerate the convergence of learning. The cross-entropy error function is originated from relative entropy, assuming that a random variable has two alphabets. Relative entropy is a distance measure between two probability density functions. In this paper, we derive the relationship between CE error function and relative entropy. Based on the result, we also derive a new distance measure between two pdfs from the n-th order extension of cross-entropy error function. 
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1. Introduction 

Feed-forward neural networks(FNNs) are universal approximators, which can approximate any function with enough number of hidden nodes[1]. Usually the error back-propagation(EBP) algorithm using mean-squared error is used to train FNNs[2]. However, the EBP algorithm suffers from slow convergence of learning. The sigmoid activation function can be divide into central linear region and two saturated regions. If output node is in the opposite saturated region to its desired value, we say “the output node is incorrectly saturated.” The incorrect saturation is the major reason of slow convergence. In order to accelerate the convergence, Ooyen and Nienhuis proposed the cross-entropy(CE) error function[3]. Since the CE error function removes the slope term of sigmoid activation function in the updating equation of weights according to gradient descent, the strong error signal for incorrectly saturated output nodes accelerates the learning convergence of FNNs. However, the CE error function make output nodes of FNNs too much saturated and this overspecialization causes poor performance of learning. In order to solve this problem, Oh proposed the n-th order extension of CE(nCE) error function[4]. The nCE error function generates a strong error signal for incorrectly saturated output nodes, like the CE error function. While the nCE error function generates a weak error signal for correctly saturated output nodes, like the classification figure of merit objective function[5]. Thus, the nCE error function accelerates the learning convergence through preventing the incorrect saturation of output nodes. And it improves the generalization performance of FNNs through preventing heavy training for training samples. Information theory has a great role in the neural network community. Learning rules were proposed based on the information theoretic view[6-10]. The upper bound of probability of error was derived based on the Renyi’s entropy[11]. FNNs can be constructed using information theory[12]. The role of hidden nodes can be developed for better performance of FNNs[13][14]. In this paper, we derive the relationship between CE error function and relative entropy. The relative entropy is a distance measure between two probability density functions (pdfs). Based on the derivation, we derive a new distance measure between two pdfs from the nCE error function.
2. Cross-Entropy and Relative Entropy
We can use unipolar [0,1] or bipolar [-1,1] models for node values of FNNs. Since we try to derive the relationship between entropy and error functions, we choose the unipolar model of node values. Firstly, the relationship between relative entropy and cross-entropy error function is derived. The relative entropy between two pdfs is defined by 
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where  
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 are pdfs and x is the random variable value[15]. Let’s assume that the random variable x has only two alphabets 0 and 1, in which the probabilities are 
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Also, 
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Then,
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Here, 
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is the entropy of a random variable with two alphabets and 


[image: image10.wmf])

1

log(

)

1

(

log

q

p

q

p

E

CE

-

-

-

-

=

                                                      (6)
is the cross-entropy. In FNN, p corresponds to the desired value ‘t’ and q corresponds to the real output value of FNN ‘y’. Thus, the cross-entropy error function[3] 
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is derived from the relative entropy.
     The nCE error function had been proposed based the bipolar model of node values[5]. It can be changed into the unipolar model of node values, given by
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where n is a positive integer. From the nCE error function with n=2, we derive a new error measure 
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 between two pdfs of a random variable with two alphabets.
3. Simulations 
Within the range of 
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, we draw three dimensional plots of D(p||q) and F(p||q).  From the plots, F(p||q) is also a distance measure between p and q with characteristic of wider flat region around p=q and steeper increasing of distance when p goes far from q. 
4. Conclusion
We derived the relationship between CE error function and relative entropy. Also, a new distance measure between two pdfs of a random variable with two alphabets was derived from the nCE error function. The new distance measure has the characteristics of nCE to prevent overspecialization to training samples.
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