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	Abstract

	A ROC(receiver operating characteristics) graph is a technique for comparing classifiers and selecting a better one based on a performance. In this paper, we compare mean-squared error, cross-entropy error, classification figure of merit, and the n-th order extension of cross-entropy error based on the ROC graph. After training of feed-forward neural networks using CEDAR database, the ROC graphs are plotted and they inform us which objective function is better. 
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1. Introduction 

Feed-forward neural networks (FNNs) can approximate any function with enough number of hidden nodes and this characteristic supports applications of FNNs to many fields[1]. Although there have been theoretical proofs for the capability of FNNs[1][2], how to train FNNs is still a challenging problem and various objective functions have been proposed to improve the training of FNNs. Many researchers have statistically analyzed the objective functions for verifying the effectiveness of objective functions[3][4]. Also, FNNs’ performance can be compared after trained for some application problems. These comparison based on simulation results of real problems can provide us with information for selecting better training methods among various ones.
When we compare the simulation results, how to compare them is also important. We usually adopt error, accuracy (recognition ratio), convergence speed, and computational cost as performance criteria. Since simple classification accuracy is often a poor metric for measuring performance, recent years have seen an increase in the use of ROC graphs in machine learning community[5]. In this paper, we briefly introduce the ROC graphs and use them to compare FNN classifiers trained with mean-squared error(MSE)[6], cross-entropy(CE) error[7], classification figure of merit(CFM)[8], and the n-th order extension of CE(nCE)[9].
2. ROC(Receiver Operating Characteristics) Graph
A ROC graph has long been used in signal detection theory to depict the tradeoff between detection probability and false alarm rate of signal detectors[10]. This is adopted as a technique for visualizing, organizing and selecting classifiers based on their performance[5][11]. Let us begin by considering classification problems using only two classes. When an input sample is presented to a classifier, it is mapped to one element of the set 
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 of positive and negative classes. For simplicity of explanation, we assume that the classifier has continuous outputs and different thresholds may be applied to predict class membership. The labels 
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 denotes the predicted class and 
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 denotes the actual class. Then, the detection probability or true positive rate is defined by
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Also,  the false alarm rate or false positive rate is defined by 
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Then, ROC graphs are two-dimensional graphs by varying the threshold in which tp rate is plotted on the vertical axis and fp rate is plotted on the horizontal axis. An ROC graph depicts relative tradeoffs between benefits (true positives) and costs (false positives).  The ROC graphs are especially useful for domains with skewed class distribution and unequal classification error costs[5].
In the case of multi-class problems, the tp rate corresponds to the classification rate and the fp rate corresponds to the misclassification rate.
3. Various Objective Functions
Conventionally, we use MSE to train FNNs[6]. However, MSE has drawbacks with slow convergence and poor generalization performance. The slow convergence is due to the incorrect saturation of output nodes and this can be accelerated by CE error[7][12]. Also, CFM improves the generalization performance by increasing the difference between the correct class output node and the other output nodes[8]. nCE has adopted the fast convergence of CE and better generalization of CFM[9]. We select MSE, CE, CFM, and nCE for comparisons using ROC graphs. 
4. Simulations 
FNNs are trained with the CEDAR database[12], which is the database of handwritten digits. Each digit image is normalized to 12×12 and there are 18,468 training samples. We use 2,213 samples for validation and 2,711 samples for test. FNNs are with 144 inputs, 30 hidden and 10 output nodes, respectively. The initial weights are drawn at random from a uniform distribution on 
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 for avoiding premature saturation[13]. Also, under the assumption that output nodes are uniform on 
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, learning rates are derived so that the expectation of learning rate multiplied by delta signal has same value in each method[9]. So, learning rates of 0.006, 0.002, 0.0015, 0.003 and 0.005 are used for MSE, CE, CFM, nCE (n=2), and nCE (n=4). If there is no improvement of classification of validation samples with additional 50 training epochs, we stop the training of FNN and evaluate the ROC graph in each method. The simulation is conducted nine times and the results for each objective function are averaged to plot ROC graph.
5. Conclusion
In this paper, we investigate ROC graphs of MSE, CE, CFM, and nCE using simulations of CEDAR database. ROC graphs show that nCE is the best among the four objective functions and this coincides with the comparison results in [9]. 
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