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Abstract

Multilayer perceptrons(MLPs) or feed-forward neural networks are widely applied to many areas based on their function approximation capabilities. When implementing MLPs for application problems, we should determine various parameters. In this paper, we discuss the design of MLPs especially for pattern classification problems. This discussion includes how to decide the number of input and hidden nodes, how to initialize the MLPs, and how to train the networks among various error functions.
1. Introduction

It is well known that multilayer perceptrons(MLPs) or feed-forward neural networks have the capability of function approximation through series of weighted sums and nonlinear transformations[1]. Based on the characteristic, MLPs have been widely applied to pattern recognition, time series prediction, nonlinear control, telecommunications, etc. 
When implementing MLPs for such application problems, there are many things to be decided for designing the structure of MLPs and selecting training methods. In this paper, we discuss the design of MLPs for pattern classification problems. This includes how to decide the number of input and hidden nodes, what is the range of initial weights, and which error function we can use for improved performance.
 2. Architecture of MLP and EBP Algorithm
Consider an MLP consisting of N inputs, H hidden, and M output nodes. Here, each node has a value between -1 and 1. Also, let the desired output vector corresponding to an training input vector 
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is presented to the network, the state of jth hidden node is
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Also, 
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 is the sigmoidal activation function, 
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Here,
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Now, we describe the EBP algorithm. The conventional MSE function is 


[image: image19.wmf]2

/

)

(

)

(

1

2

å

=

-

=

M

k

k

k

m

y

t

E

x

.                                                          (3)

To minimize 
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 is the error signal for the kth output node. The hidden weights are updated as
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3. How to Decide the Number of Nodes in Each Layer
Usually, the number of input nodes N corresponds to the dimension of input data. The input data can be raw data or features extracted from raw data. There are two general approaches for reducing input dimensionality, i.e. feature extraction and feature selection[3]. Feature extraction is transforming the existing features into a lower dimensional space, while feature selection is selecting a subset of the existing features without a transformation. Principal component analysis(PCA) and nonnegative matrix factorization(NMF) can be categorized into feature extraction. Also, mutual information(MI) is a good tool for feature selection. In pattern recognition applications, the number of output nodes M is equal to the number of classes. 
The objective for determining the number of hidden nodes is to find the smallest architecture that accurately fits the true function described by the training data[4].  A too large architecture may accurately fit the training data, but may have bad generalization due to over-fitting of the training data. On the other hand, a too small architecture will save on computational costs, but may not have enough processing elements to accurately approximate the true function.

There have been many approaches to select the architecture of MLPs, which can be categorized into brute-force approach, regularization, network construction, and pruning.  The brute-force approach is finding the global optimum architecture through an exhaustive search over all possible architecture. However, the search space explodes with the number of weights. Neural network regularization involves the addition of a penalty term to the objective function to be minimized. This regularization requires a delicate balance between the normal error term and the penalty term. Network construction algorithms start training with a small network and incrementally add hidden nodes during training when the network is trapped in a local minimum. Crucial to the success of construction algorithms is effective criteria to trigger when to add a new unit, when to stop the growing process, where and how to connect the new unit to the existing architecture and how to avoid restarting training. 
Neural network pruning algorithms start with an oversized network and remove unnecessary network parameters, either during training or after convergence to a local minima. We can use the orthogonal property of hidden weight vectors for pruning[5].
4. Initialization of MLPs for Avoiding Premature Saturation
In pattern recognition applications, the desired output value of MLP is one of the two extreme values of the sigmoid function. If the weighted sum to any output node is near the wrong extreme value, we say the node is “incorrectly saturated.” When an output node is incorrectly saturated, the amount of weight change is small due to the small gradient of the sigmoid activation function and the error remains nearly unchanged[6]. This causes the critical drawbacks of the EBP algorithm, that is, slow learning speed and convergence to local minima.

Especially, when output nodes are incorrectly saturated in the initial stage of learning, we can find the “premature saturation” which is a phenomenon that the error of MLP stays significantly high constant for some period of time during training. The probability of premature saturation was derived in terms of the maximum value of initial weights, the number of nodes in each layer, and the maximum slope of the sigmoid activation function[6]. Based on this result, the premature saturation can be avoided with proper initial weight settings such that output nodes are in the linear region of sigmoid activation function in the initial epoch.

5. Error Functions for Improved Performance 
Among many error functions proposed to improve the performance of EBP algorithm, the cross-entropy(CE) error function was interesting because it could remove the incorrect saturation of output nodes during training[7]. However, the CE suffers from overspecialization for training patterns since the error signal for a correctly saturated output node is too strong. 
In order to resolve this problem, an nth order extension of the cross-error function(nCE) was proposed[8]. This nCE error function accelerates the learning speed of EBP algorithm by reducing the probability that output nodes are near wrong extreme values.  It also prevents the overspecialization of learning for training patterns by generating a weak error signal for output node near the desired value. Here, the error signal of output layer can be represented by an nth order function of the difference between desired and actual output values.  
6. Classification of Imbalanced Data 
In many classification problems, unusual or interesting class is rare among a general population. This data imbalance has been reported in a wide range of applications such as remote sensing, bio-medical diagnoses, etc. Many methods for classification of the imbalanced data can be categorized into the data level approach, algorithmic level, and ensemble scheme.
Among the above approaches, developing a better classifier at the algorithmic level is critical because it is the essential part in the data level approach or ensemble of classifiers. Recently, a new error function for classification of imbalanced data was proposed which intensifies weight-updating for the minority class and weakens weight-updating for the majority class[9].
7. Conclusion
In this paper, we discussed the design of MLPs. Regarding the architecture of MLPs, inputs could be reduced by feature extraction or feature selection. The number of hidden nodes could be determined by the brute-force, regularization, network construction, or pruning techniques. We could avoid the premature saturation by proper initial weight settings. For better performance, nCE error function was selected. Also, there was an error function suggested for classification of imbalanced data problems.
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