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Abstract

The distortion effects of microphones have been analyzed and compensated at mel-frequency feature domain. Unlike popular

bias removal algorithms a linear transformation of mel-frequency spectrum is incorporated. Although a diagonal matrix

transformation is sufficient for medium-quality microphones, a full-matrix transform is required for low-quality microphones

with severe nonlinearity. Proposed compensation algorithms are tested with HTIMIT database, which resulted in about 5

percents improvements in recognition rate over conventional CMS algorithm.
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[. Introduction

Microphone mismatches between training and testing
environments result in severe performance degradation
and become one of the critical difficulties in real-world
automatic speech recognition systems[1]. Microphone is
mainly characterized by frequency response, nonlinearity,
and directionality, and these properties can be quite
different from microphone to microphone[2].

It is well known that microphone characteristics can be
approximately modelled with impulse responses with short
time delay, which can be taken as an additive bias term
to clean speech features in the log-spectrum domain, and
be compensated by cepstral mean subtraction (CMS)[1,2].
However, the nonlinearity inherent in low-quality microphones
is not incorporated in simple bias removal algorithms[3].

In this paper, we analyze the effects of microphones

with short time delays on speech features, and come up
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with a new compensation method at mel-frequency
log-spectral domain. The proposed compensation method
is verified with HTIMIT database, and provides big
improvements in recognition rates even for low-quality

microphones.

[l. Analysis of Distorted Features

To analyze distortion effects of microphones in the
feature domain, linear time-invariant channel is assumed
as x(6y=>, s(t-r)h(r). Here, s(f), h(¢) and x(f) are clean
signal, microphone impulse response, and distorted signal,
respectively. The short-time Fourier transform of distorted

speeches at a time frame is given by

X, )= w(n-mx(m)e”™
=3, Zw(n,—m_r)s(m)e-/znﬁn ()™
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Here, w(n) is Hamming window function, and »n, (= 7)

is the sampled time index corresponding to the #; time



frame with a frame interval /.

It is reasonable to assume that Hamming window
function is approximately constant over the short interval
of microphone impulse responses[4]. Therefore, eaqn. 1
can be rewritten as X(¢,/)=S(¢,/)H(f), where H(f) and S(z,f)
are Fourier transforms of the microphone impulse response
and Hamming-windowed speech signal, respectively.

Mel-frequency log-spectral features are given as
. ] 2
Xi(t,j)~log kZ/_vj(k)llH(k)ll Spl(t,k) @

where S,(1,k) = |1S(t/0lI> and v(k) is the weights at jy,
mel-frequency band from k4, power-spectrum. j; and jj
denote the lower and higher power-spectrum index
corresponding to j;, mel-frequency band, respectively.
If we assume that microphone transfer function does not
vary much for an interval of each mel-frequency band,

channel frequency response can be written as
NHDI® = IHOI® + A ©)
where Ax is a small perturbation quantity.

Revisiting eqn. 2, distorted log-spectrum can be calcu-

lated as

) 35,005,004,
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kZJ)v,-(k)Sp(t,k)llH(j)IF
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“)

Finally, distorted cepstrum features can be written as

X(t,i) = Z]: CySi(tj)+ ZJHC(,HL(t,j) =Sc(t,)+Hc(ti)  (5)

where C; is a coefficient for discrete cosine transform
(DCT).
Since A is slowly-varying compared to Sp(z,k) within

each mel-frequency band, the temporal variation of bias

terms, H;(tj) and Hi(tj), may be negligibly small.

lIl. Compensation of Channel-distorted
Features

It is assumed that there exist some measured data for
clean speeches and corresponding distorted speeches with
the microphone of interests. At the training phase of
feature transformer both the clean speeches and distorted
speeches are fed to a same feature extractor, and the
parameters are adjusted to minimize the mean-square-
error (MSE). At the test phase the trained networks
transform the distorted features into clean speech features
for better recognition performance.

Although the simple bias model assumes linear time-
invariant channel, more sophisticated model may still be
desirable. In this paper, we introduce a diagonal model in
the log-spectrum feature domain to compensate distortion

effects of microphones from eqn. 4. That is,

= g xy T § (©6)

B =5 3y - £ ()

where x; X; and y, denote distorted feature vector,
compensated feature vector, and clean feature vector at ¢
frame and j;, band, respectively.

While ¢; denotes the bias term at each mel-frequency
band, ¢; compensates for the slight nonlinearity of mi-
crophones. In general, it may seem that microphone
nonlinearity can be modelled as a power function with
exponent f; in the power-spectrum domain. Then, the

mel-frequency log-spectrum of clean speech in eqn. 4 can
Jh

be rewritten as log( Z vi(k)Sp(t,k) ¥). By the proper
k=j;

choice of ¢;, our diagonal compensation model given in

eqn. 6 achieves

log( Y. vRSHLD) *) = e log( D v(RSHLK) ®)

k=jj k=jj

Although ¢; is time-dependent, it may be approximated

to a constant for each mel-frequency band.
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Optimal parameters can be iteratively calculated by

minimizing second-order error function E; as

>, - & ImDx,
2, ©)

t

& m+11=2 (v, —a,mlx,)

However, the diagonal compensation model in eqn. 6 is
not sufficient especially for low-quality microphones. It
may come from the fact that microphone nonlinearity
introduces spectral harmonics in speech features, which
introduces spectral interactions. These spectral harmonics
occur in low-quality microphones, and need to be com-

pensated by a full matrix as
%, = Za_,-,x,, +&, (10)

Free parameters can be easily computed by minimizing

the mean-square-error function like as defined in eqn. 7.

IV. Experimental Results

To evaluate the performance of the proposed compensation
methods, we conducted recognition experiments for a set
of 40 phonemes in HTIMIT database[3]. HTIMIT database
is a playback of TIMIT subsets through 10 different
microphones, ie., high-quality Sennheizer, 4 carbon-button

types (CB1, CB2, CB3, CB4), 4 electret types (EL1, EL2,
EL3, EL4), and a cordless portable microphone (PT1).
Among 10 microphones, CB3, CB4 and PT1 are known
as low-quality microphones with nonlinear effects.

2056 sentences from 257 speakers are used for recognizer
training and 384 sentences collected from region-balanced
48 speakers are used for recognition test. Sixteen mel-
frequency filter banks are used, and 13th-order MFCC
features are calculated with 13 delta and 13 delta-delta
features. Context-dependent HMM is used for the
recognizer with 2182 triphones and 16 Gaussian mixtures.
For the training of feature transformer, we selected 40
sentences from the database, which are not used for the
training and testing of the recognizer.

Table 1 displays the recognition rates for speeches dis-
torted by ten microphones when the recognizer is trained
on high-quality speeches from Sennheizer microphone.
Normalized mean-squared-errors at the cepstrum domain
between Sennheizer microphone speeches and compensated
microphone speeches are also shown in the Table. Base-
line results show that mismatched microphones degrade
recognition rates about 10 percents in moderate- quality
microphones to 15 percents in low-quality microphones.
Although the CMS algorithm provides enhanced recog-
nition rates, the proposed diagonal compensation model
(DIAG) results in much better recognition rates and lower
feature compensation errors. The full- matrix model
(FULL) results in further improvements, especially for

low-quality microphones.

Table 1. Phoneme recognition rates and feature compensation errors for HTIMIT database.

Handset Recognition rates Feature compensation errors

types Matched Mis-matched CMS DIAG FULL Mis-matched CMS DIAG FULL
Senn 62.3

CBt1 60.2 52.8 56.2 58.1 59.2 1.64 1.21 1.02 0.97
CB2 61.6 532 55.4 60.3 60.5 1.36 1.08 0.85 0.81
CB3 53.2 39.1 43.3 46.5 48.6 2.08 1.66 1.47 1.19
CB4 54.6 375 40.4 437 46.9 2.09 1.70 1.49 1.26
EL1 60.9 50.4 56.2 59.1 60.2 1.89 1.12 0.84 0.82
EL2 58.8 473 54.0 56.3 56.5 1.69 1.20 0.94 0.79
EL3 56.7 50.4 52.4 53.1 53.4 1.64 1.47 1.27 1.21
EL4 59.3 447 516 54.4 56.8 2.63 1.14 1.02 0.96
PT1 55.4 40.3 44.2 45.9 49.8 3.06 1.40 1.13 0.98
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(a) Senn-to-CB3

Figure 1. Normalized correlation plots of mel-frequency spectrum (a)
(b) autocorrelation of Sennheizer microphone speeches.
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Figure 2. Ceptrum-domain mean-square-errors with proposed compensation models (a) from CB1 to Sennheizer microphone (b)

from CB3 to Sennheizer microphone.

Fig. 1(a) represents normalized correlations between
mel-frequency spectrum recorded by Sennheizer and CB3
microphones. Also correlations among Sennheizer micro-
phone features are plotted in Fig. 1(b) for comparison. As
shown in Fig. 1, CB3 microphone speeches show higher
correlations between adjacent spectral bands, which
explains the poor performance of the diagonal model in
Table 1.

Fig. 2 represents cepstrum-domain mean-square-error
for test speeches after two microphone speeches (CB1 and
CB3) are compensated to Sennheizer microphone. Although
the proposed compensation models greatly reduce microphone
mismatches for smaller quefrencies, the mismatches in
higher quefrencies are reduced only slightly. It may come
from the time-independent assumption of ¢; and &; in the

compensation models.

V. Conclusion

In this paper we demonstrated that microphone mismatches
can be compensated at feature-space transformation for
robust speech recognition. Diagonal model in the log-
spectral domain can be successfully applied to compensate
for moderate-quality microphones, whereas a full-matrix
compensation model is better for low-quality microphones.
By calculating feature compensation parameters in advance,
low-quality microphones may become applicable to real-

world speech recognition systems.
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