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Abstract

The effects of linear acoustic channels have been analyzed and compensated at mel-frequency feature domain. Unlike popular RASTA filtering our approach incorporates separate filters for each mel-frequency band, which results in better recognition performance for heavy-reverberated speeches.
Keywords : acoustic channel compensation, channel deconvolution, 

mel-frequency log-spectrum, feature transformation, robust speech recognition

I. Introduction

Acoustic channel mismatches between training and testing environments result in performance degradation in automatic speech recognition. Although time-domain deconvolution filters may be developed, they require extensive computation, especially for acoustic channels with long time delays. Therefore, many researchers had come up with filtering approaches at feature domain. Effects of microphones and telecommunication channels can be modeled with impulse responses with short time delays and add bias terms to clean speech features in the log-spectrum domain, which may be compensated by log-spectral mean subtraction [1,2].

However, room acoustics usually come with longer time delays, which introduce interactions among several time frames. Highpass or bandpass filters at modulation-frequency domain had been developed by heuristics or based on information theory [1,3].

In this study, we analyzed the effects of acoustic channels with longer time delays on speech features, and came up with a new filtering method at mel-frequency spectral domain. Unlike other feature space methods our method incorporates separate filters for each mel-frequency band, which are optimized based on given training sets of clean and distorted speech data. The performance of the proposed compensation method was tested for several acoustic channels.

II. Analysis of distorted features

To analyze channel distortion effects in the feature domain, linear time-invariant channel is assumed as 
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 are clean signal, channel impulse response and distorted signal, respectively.  

The short-time Fourier transform of distorted speeches at a time frame is given by
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 time frame with a sample length I between time frames. By decomposing the global sample index r into time frame index l and local sample index k at a time frame, i.e., 
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where 
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 is the Fourier transform of clean speech with a shifted window by k time samples as shown in Figure 1. By introducing 
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, it is possible to model intermediate feature vectors between adjacent frames.

<Figure 1 attach here>

In general, 
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 is a fast-varying function of k, and the dependency becomes more complicated for 
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 with the complex exponential term. However, in order to allow small feature changes between adjacent frames, the number of time samples between frame shifts is usually set to a small number. Therefore, 
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Moreover, if 
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It can be noticed that acoustic channel distorts each spectral band separately, which are modeled as independent convolutive filters along time frames. Therefore, to compensate for channel distortions, one needs to define deconvolutive filters for each spectral band.

III. Compensation of channel-distorted features

It is assumed that there exist some measured data for clean speeches and corresponding distorted speeches with the acoustic environment of interests. Deconvolutive filters are adaptively trained to transform the distorted features into clean speech features.

<Figure 2 attach here>

Figure 2 illustrates the basic concepts of the adaptive training and feature compensation at test phase. At the training phase of the convolutive filters both the clean speeches and distorted speeches are fed to a same feature extractor, and the filter coefficients are adaptively adjusted to minimize the mean-square-error(MSE). At the test phase the convolutive filters transform the distorted features into clean speech features for better recognition performance.

Popular MFCC features are selected for speech recognition tasks. To obtain MFCC feature from the short-time Fourier transforms of speeches in eqn. 3, one need to calculate magnitude squares for spectral powers, sum over mel-frequency bands, apply logarithmic operations, and perform discrete cosine transforms. Although the linear filters are defined at short-time Fourier transform domain only and nonlinear transforms are required for the other cases, the linear convolutive filters may still be applicable as an approximation. The discrete cosine transforms introduce couplings among frequency bands, and the proposed convolutive filters can not be applied separately for each frequency band. Therefore, we had tested the convolutive filters at complex spectrum, spectral power, mel-frequency spectral power, and log-spectrum domains. At the log-spectrum domain the transformation equation is given as
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where 
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 mel-frequency band. With zero-mean normalization of feature vectors these bias terms become zero.

Steepest decent algorithm is able to find proper mapper parameter 
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 minimizing eqn. 4 as shown below
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To speed up the parameter learning, we calculated optimal learning rate 
[image: image37.wmf]opt
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 as follows. Here, we revisited error function defined at eqn. 4 as
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Hence, minimization of 
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 with respect to 
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 gives following optimal learning rate.
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IV. Experimental Results

To evaluate performance of the proposed convolutive filters, we conducted isolated word recognition(IWR) experiment using speech signal distorted by simulated channels. Korean 50-word database uttered three times by 16 people is used as baseline experiment[5]. Among the total of 2400 utterances, 1350 utterances are used for recognizer training and the other 1050 utterances are used for recognition test. We make four sets of training and test division by random selections in order to effectively utilize small database. Each speech frame is generated with a 30 msec Hamming window and 10 msec shifting. Twenty-three mel-frequency filter banks are used, and 13th-order MFCC features are calculated. Then, each word is normalized to 64 with a trace segmentation algorithm. A multilayer perceptron with 832-50-50 nodes is used for recognition and recognition results are summarized by averaging over 20 trials, i.e., 5 trials with random initialization for each of 4 data sets.

For training of convolutive filters, we made use of 15 second-long speech signals extracted from the train database, which are not included in the four sets of recognizer test speeches. Each convolutive filter incorporates 9-frame delays.

Simulated acoustic channels with three different RT60 reverberation time, i.e., 170 msec, 350 msec, and 700 msec, are generated by image method[4] as shown in Figure 3. These channels are convolved with clean speech database in the time domain, which results in channel-distorted speech.

<Figure 3 attach here>

Experimental results show that feature transformations at the log-spectrum domain provide best recognition performance. It may come from the fact that the log-spectrum values are most directly connected to the MFCC values. Therefore, results of feature transformation only at the log-spectrum domain are reported here. 

< Table 1 attach here>

Table 1 displays the recognition rates for speech distorted by three simulated channels when the recognizer is trained on clean speech. Baseline results show that mismatched channels degrade recognition rates about 20 percents in light reverberation to 35 percents in heavy reverberation. Although the RASTA algorithm with a fixed convolutive filter for all frequency bands provides enhanced recognition rates, the proposed convolutive filters for each mel-frequency band result in much better recognition rates.

It can be seen from Table 1 that recognition rates are improved by about 10 percents over RASTA algorithm. The improvements come from added complexity of the convolutive filters with available clean-to-distorted speech training data.

<Figure 4 attach here>

Figure 4 represents frequency magnitude responses for the twenty-three trained filters for the 3 acoustic channels. The frequency response of the RASTA filter is also shown at Figure 4(d) for comparison. The average frequency response of trained convolutive filters for the 23 mel-frequency bands is quite similar to that of the RASTA filter for acoustic channels with shorter time delays. However, as the time delay becomes longer, the trained filter results in smaller cutoff frequencies with more variations among frequency bands. It may come from the narrower frequency bandwidth of the impulse response function with shorter time delays. 

V. Conclusion

In this paper we demonstrated that acoustic channels with long time delays can be compensated for robust speech recognition. By training separate convolutive filters at each mel-frequency band, the developed algorithm successfully compensated acoustic channels up to 700 msec time delays.
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Figure 2. Basic concepts of acoustic channel compensation
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Figure 3. Impulse response for simulated acoustic channel with several reverberation time(RT60) (a) 170msec (b) 350msec (c) 700msec
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Figure 4. Frequency responses of trained filters and RATSA-filter
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