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Abstract| This paper proposes optimal learning rates

in gradient descent training of multilayer perceptrons,

which are a separate learning rate for weights associated

with each neuron and a separate one for assigning vir-

tual hidden targets associated with each training pattern.

That is, a hidden weight vector has two optimal learning

rates, the one for assigning virtual hidden targets and the

other for minimizing a hidden error function proposed in

this paper. E�ectiveness of the proposed error function

was demonstrated for a handwritten digit recognition and

an isolated-word recognition tasks and very fast learning

convergence was obtained.

I. Introduction

A popular method of training multilayer percep-
trons(MLPs) is the error backpropagation(EBP) algo-
rithm which is a gradient descent with �xed learning
rate[1]. In order to accelerate the EBP algorithm, which
has a drawback with slow convergence, many proposed a
modi�ed error function which showed improved conver-
gence[2]. However, they are still based on the gradient
descent with non-optimal learning rates.

Another approach is second-order nonlinear optimiz-
ing methods such as conjugate gradient or Newton's
methods. The critical drawbacks of these methods, how-
ever, are the ill conditioning of the Hessian matrix in
many applications and the computational complexity
related to the Hessian[3]. In order to overcome the
drawbacks of the Hessian, many proposed the layer-by-
layer(LBL) optimizing algorithm which decomposes each
layer of MLP into both a linear part and a nonlinear
part[3]. This method also showed a stalling problem
due to assigning hidden targets[4].

Besides the above approaches, an adaptive learning
rate in the EBP algorithm was also proposed. We con-
centrate on this approach since the EBP algorithm will
be more powerful if it has an optimal learning rate. The
optimum value will depend on a particular problem, and
will typically vary during training.

One for adapting the learning rate is the bold
driver(BD) technique[5]. This increases the learning rate

if the error decreases at a given step. Otherwise, the
learning rate is decreased. Jacobs, also, proposed the
delta-delta rule in which a separate learning rate for each
weight was adapted during the training process[6]. That
is, a particular learning rate is increased when the deriva-
tive of error with respect to the corresponding parameter
has the same sign on consecutive steps. If not, the learn-
ing rate is decreased. A modi�cation to this algorithm,
known as the delta-bar-delta(DBD) rule, was also intro-
duced on the assumption that the weights could be re-
garded as relatively independent. The weights, however,
are strongly coupled in a typical neural networks. Be-
sides the above methods, Fahlman proposed the quick-
prop algorithm in which the error surface was approxi-
mated by a quadratic polynomial of each weight[7]. Al-
though all the heuristics showed improved convergence
in some problems, any of them is not optimum.
This paper proposes optimal learning rates for each

neuron and pattern in the EBP algorithm. Section II
brie
y reviews MLPs and section III introduces an op-
timal learning rate for an output weight vector. Section
IV proposes optimal learning rates for a hidden weight
vector. To derive them, virtual hidden targets are as-
signed and a new hidden error function is de�ned. In
section V, e�ectiveness of the optimal learning rate is
demonstrated for two recognition tasks. Finally, section
VI concludes this paper.

II. Multilayer Perceptrons

Consider an MLP consisting of N inputs, H hidden
neurons, andM output neurons. When an input pattern
x = [x1; x2; : : : ; xN ] is presented to the MLP, the jth
hidden neuron's value is given by

hj = f(ĥj) = tanh(ĥj=2); j = 1; 2; : : : ; H; (1)

where f(:) is the sigmoidal activation function of hidden
neuron and

ĥj =

NX

i=0

wjixi (2)



is the net-input to hj . Here wj0 with x0 = 1 is the bias
and wji is the weight connecting xi to hj . Also, the
net-input to yk(the kth output neuron) is

ŷk =

HX

j=0

vkjhj ; k = 1; 2; : : : ;M; (3)

where vk0 with h0 = 1 is the bias and vkj is the con-
nection weight between hj and yk. We here assume that
the output neuron is linear, that is yk = ŷk.
For P training patterns x

(p)(p = 1; 2; : : : ; P ) with
associated target vectors of output layer t

(p) =

[t
(p)
1 ; t

(p)
2 ; : : : ; t

(p)

M ], the weights should be optimized to
minimize the MSE of output layer given by

Eout =
1

2

PX

p=1

MX

k=1

(t
(p)

k � y
(p)

k )2: (4)

III. Optimal Learning Rate for an Output

Weight Vector

In the EBP algorithm with a separate learning rate for
weights associated with an output neuron, the output
weight vkj is updated according to

�vkj = ��
out
k

@Eout

@vkj
= �outk

PX

p=1

(t̂k
(p)
� ŷk

(p))h
(p)
j (5)

where �outk is the learning rate for the weight vector asso-
ciated with yk. After updating the output weights vkj 's,
the MSE will be

Eout(�outk ) =
1

2

PX

p=1

MX

k=1

(t̂k
(p)
�ŷk

(p)+�outk

HX

j=0

@Eout

@vkj
h
(p)
j )2:

(6)

If h
(p)
j is �xed, the optimum �outk is derived by

�outk =

PH

j=0(
@Eout

@vkj
)2

PP

p=1(
PH

j=0
@Eout

@vkj
h
(p)
j )2

; k = 1; 2; : : : ;M; (7)

under the condition that @Eout(�outk )=@�outk = 0. Thus,
the output weights are updated using the optimum
learning rates.

IV. Optimal Learning Rate for a Hidden

Weight Vector

In this section, �rstly hidden targets are assigned and
a new hidden error function (Ehid

n ) is de�ned based on
the targets. After then, optimizing equation of hidden
weights (�wji) to minimize Ehid

n is derived. Finally,
optimal learning rates of the EBP algorithm for hidden
weights are derived by removing virtual hidden targets.

The target of h
(p)

j is given by

z
(p)
j = h

(p)
j + �p�

(p)
j ; (8)

where z
(p)
j denotes the hidden target and

�
(p)

j � �

@Eout

@h
(p)
j

=

MX

k=1

(t̂k
(p)
� ŷk

(p))vkj : (9)

Also �p is the learning rate for assigning hidden targets.
If vkj is �xed, the MSE of output layer is a quadratic
functional of �p and the optimum �p can be derived under
the condition that @Eout=@�p = 0. That is, the optimum
�p is derived by

�p =

PH

j=1(�
(p)
j )2

PM

k=1(
PH

j=1 vkj�
(p)
j )2

; p = 1; 2; : : : ; P: (10)

After assigning the hidden targets with the optimum

�p's, it is truncated to satisfy �1 < z
(p)

j < 1 and then

the target of net-input to h
(p)
j is given by

ẑj
(p) = f�1(z

(p)
j ) = 2 tanh�1(z

(p)
j ): (11)

Based on the assigned hidden targets, a new error
function for hidden layer is de�ned by

Ehid
n =

1

2

PX

p=1

HX

j=1

(ẑj
(p)
� ĥj

(p)
)2[f 0(ẑj

(p))]2: (12)

In this error function, the second term related to the

slope of z
(p)
j controls the updating amount of weights

according to whether ẑj
(p) is in the linear region or sat-

uration region of sigmoid function. If ẑj
(p) and ĥj

(p)

are in the same saturation region, the di�erence between

z
(p)
j and h

(p)
j is small although the one between ẑj

(p) and

ĥj
(p)

is large. In this case, it is not adequate to change
the associated weights according to the large di�erence

between ẑj
(p) and ĥj

(p)
. When ẑj

(p) is in the linear re-
gion, on the contrary, the associated weights need to be
changed according to the di�erence between ẑj

(p) and

ĥj
(p)
.

For minimizing Ehid
n , the hidden weight wji is updated

by

�wji = ��
hid
j

@Ehid
n

@wji
; (13)

where �hidj is the learning rate and

@Ehid
n

@wji
= �

PX

p=1

(ẑj
(p)
� ĥj

(p)
)[f 0(ẑj

(p))]2x
(p)
i : (14)



Substituting wji +�wji into Eq. (12), the error will be

Ehid
n (�hidj ) = 1

2

PP

p=1

PH

j=1(ẑj
(p)
� ĥj

(p)
+ �hidj

PN

i=0

@Ehid
n

@wji
x
(p)
i )2[f 0(ẑj

(p))]2: (15)

And the optimum �hidj (j = 1; 2; : : : ; H) is derived by

�hidj =

PN

i=0(
@Ehid

n
@wji

)2

PP

p=1(
PN

i=0

@Ehid
n

@wji
x
(p)

i )2[f 0(ẑj
(p))]2

(16)

under the condition that @Ehid
n (�hidj )=@�hidj = 0.

Now, we will remove the virtual targets in the up-
dating equations of hidden weights. For small values of

�p�
(p)
j in Eq. (8), the target of ĥj

(p)
in Eq. (11) can be

approximated by a �rst order Taylor series:

ẑj
(p) = f�1(h

(p)
j + �p�

(p)
j ) � ĥj

(p)
+ �p�

(p)
j

2

1� h
(p)
j

2
:

(17)
Also under the assumption that there is no need of

abrupt change on z
(p)
j , it can be approximated that

f 0(ẑj
(p)) � f 0(ĥj

(p)
) =

1� h
(p)

j

2

2
: (18)

By substituting (17) and (18) into (14), the derivative is
approximated by

@Ehid
n

@wji
�

PX

p=1

�p�
hid
j (x(p))x

(p)
i : (19)

where

�hidj (x(p)) = �
@Eout

@ĥj
(p)

= �
(p)
j f 0(ĥj

(p)
): (20)

Therefore, �wji using Ehid
n (Eq. (13)) is also approxi-

mated by

�wji � �hidj

PX

p=1

�p�
hid
j (x(p))x

(p)
i : (21)

This reveals two optimal learning rates of the EBP algo-
rithm for a hidden weight vector, one (�p) for assigning
virtual hidden targets associated with each training pat-
tern and the other (�hidj ) for minimizing the new hidden
error function. The hidden weights are updated accord-
ing to the above Eqs. (19) and (21) without assigning
hidden targets. That is, the hidden targets are only vir-
tual ones to derive the optimal learning rates using the
new hidden error function.

If MSE is used as an hidden error function to update
�wji, it can be approximated that

�wji � �hidj

PX

p=1

�p

f 0(ĥj
(p)
)2
�hidj (x(p))x

(p)
i : (22)

In this case, the slope term in the denominator may
make the updating amount of hidden weights very large
during the learning process and �nally the hidden neu-
rons may be heavily saturated.
The proposed gradient descent learning algorithm

with optimal learning rates are summarized in the next
three steps.

� Step 1: Update output weights with �outk as in sec-
tion III under the assumption that hidden weights
are �xed.

� Step 2: With the updated output weights, calculate

�
(p)

j (Eq. (9)), �p (Eq. (10)), and @Ehid
n =@wji (Eq.

(19)).
� Step 3: Update hidden weights according to Eq.
(21) with �hidj (Eq. (16)).

In the proposed algorithm, �vkj and �wji are con-
ducted alternatively since they are optimal under the

condition that each other is �xed. If all h
(p)
j 's are sat-

urated, the proposed method does not work. However,
this will not occur in real problems since hidden neu-
rons are trained not to be saturated but to extract near-
orthogonal features of input patterns.

V. Simulation

A handwritten digit recognition problem was used to
verify the e�ectiveness of the proposed optimal learning
rates. A total of 5,000 handwritten digitized images from
the CEDAR database were used for training after size
normalization[8]. A digit consisted of 12� 12 pixels and
each pixel took an integer values from zero to 15. The
MLP consisted of 144 inputs, 30 hidden neurons, and
ten output neurons.
We simulated the EBP algorithm with the BD tech-

nique[5], one also with the DBD rule, and the proposed
gradient descent algorithm with optimal learning rates.
The BD technique of the EBP algorithm took the ini-
tial learning rate of 0.05 with � = 1:1 and � = 0:5.
The DBD parameters were � = 0:9; � = 0:01; and
� = 1 � 10�7. And �outk in the proposed method is re-
stricted within one at the �rst and the second epoches to
prevent that output weights become very large to mini-
mize MSE while hidden neurons are near zero. Four sim-
ulations were conducted using each method with initial
weights drawn at random from a uniform distribution
on [�1� 10�4; 1� 10�4], and the results were averaged
to draw �gures.
Fig. 1(a) shows the MSE for the training patterns

in each training methods. The BD and DBD methods
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Fig. 1. Simulation Results in the handwritten digit recognition
task.

show slow convergence since their learning rates are not
optimum. Contrary to the above result, the proposed
method displays very fast decreasing of MSE since it is
the EBP algorithm with optimal learning rates. Espe-
cially, the MSE drastically decreases in the initial stage
of learning. Fig. 1(b) shows the misclassi�cation ratio
for 2,213 test patterns.

For more veri�cation of the proposed method, an
isolated-word recognition task was simulated, in which
the vocabulary consisted of 50 words and 900 patterns
were used for training MLP with 50 hidden neurons after
extracting the ZCPA feature of 1,024 dimensions[9]. Fig.
2 shows the misclassi�cation ratio for 1,050 test patterns
in this task. The proposed method shows faster training
speed than BD and DBD with better recognition ratio.

VI. Conclusion

To accelerate the EBP algorithm, this paper proposed
optimal learning rates for each neuron and training pat-
tern. The optimal learning rate for weights associated
with an output neuron was introduced under the as-
sumption that hidden weights are �xed. Especially, two
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Fig. 2. Misclassi�cation ratio for test patterns in the isolated-word
recognition task.

optimal learning rates were derived for updating a hid-
den weight vector. One was for assigning virtual hidden
targets and the other for minimizing the proposed hid-
den error function.
In the simulation of a handwritten digit recognition

and an isolated-word recognition tasks, the proposed
method showed faster learning speed than the BD and
DBD without sacri�cing generalization performance.
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