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Abstract—With the increasing importance of smart gadgets in 

our daily lives, there is a need for an automatic piano 
transcription system in various multimedia services. For 
automatic piano transcription, the string inharmonicity 
coefficient (  ) and fundamental frequency ( )  should be 
detected robustly and accurately. The proposed 
triplet-sequentially additive partial (SAP) algorithm improves the 
current  estimation algorithm in terms of both performance and 
speed with less prior knowledge. Additionally, this joint (, ) 
estimation algorithm is applied directly to the transcription of real 
piano recordings, and the 4.41% improvement of accuracy was 
achieved over another transcription system that had both similar 
processing steps and feature extraction method. 
 

Index Terms—Automatic Transcription System, Inharmonicity 
Coefficient, Multiple-Fundamental Frequency Estimation, Piano 

I. INTRODUCTION 
ANY music application services are currently employed, 
including music query by humming, music 

recommendation by genre classification, and automatic 
transcription of polyphonic music. Of these services, the latter 
is considered to be a milestone representing the beginning of 
the digital library era. Because the piano is the most 
representative instrument for polyphonic music, this study 
attempts to improve the performance of automatic piano 
transcription.  

Inharmonicity is the phenomenon of nonlinear partial peaks 
in string instruments such as the piano, violin, and guitar. In 
these instruments, high-rank partial peaks deviate more from 
integer multiples of the fundamental frequency. To improve the 
accuracy of inharmonicity coefficient () values obtained from 
these partial peaks, Rauhala et al. [1], [2] developed a  
estimation algorithm with iterative minimization of the partial 
frequency deviation (PFD) using given pitch numbers. More 
recently, Rigaud et al. [3], [4] developed a  estimation method 
with nonnegative matrix factorization (NMF). Furthermore, 
most multiple note detection algorithms have also tried to 
model the nonlinear characteristics of string instruments using 
the   concept [5]-[7]. Klapuri [5] applied harmonicity and 
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spectral smoothness to the iterative note subtraction model. 
Emiya et al. [6] employed a probabilistic model to describe the 
spectrum amplitude as the sum of the signal and noise. Benetos 
et al. [7] included a  concept with the salience function, which 
determines the pitch by scoring. Then, it erases the halving or 
multiplying false positive note candidates using the flatness and 
spectral irregularity. However, these methods are limited in 
terms of their ability to discriminate between true notes and 
false positives in particular doubling and halving errors in real 
piano recordings. 

To overcome these problems, we propose the 
triplet-sequentially additive partial (SAP) algorithm with four 
false positive (FP) error eraser blocks. The triplet-SAP 
algorithm simultaneously returns the pitch candidates (), the 
inharmonicity coefficient (), and the partial sequence (). 
With this information, we can erase three different types of 
false positive notes: trivial FP notes originating from the small 
noise peaks, harmonically related (multiplying or halving) FP 
notes by sharing the partial peaks, and decaying sound FP notes, 
which should be differentiated from the repeat note. The first 
trivial FP notes are erased based on the number of harmonics 
and amplitude score block. The second harmonically related FP 
notes are erased by the (,) thresholding block. Finally, the 
third decaying sound FP notes are erased by the repeat note 
detection block. 

II. PROPOSED METHODS 
The proposed piano note onset transcription system 

comprises two steps: a preprocessing step to extract accurate 
spectrum peaks with high-frequency resolution, and a multiple 
note detection step to extract pitch candidates. In the second 
step, two main processes are used to perform multiple note 
detection: a triplet multiple-fundamental frequency estimation 
(MF0E) process to detect polyphonic notes, and a SAP process 
to estimate a more accurate value of B. The remaining four FP 
error eraser blocks filter out different types of false positive 
error notes. 

A. Preprocessing Step 
As shown in Fig. 1, five processes are included in the 

preprocessing step. The piano recording is given to the system 
as an input, and we used the corresponding MIDI file to extract 
the onset information. To handle the asynchronous onsets of 
simultaneous notes that deviate from 20 to 70 ms in real piano 
play [8], we merged onsets within a 30 ms time gap. In the 
segmentation block, the recording signal is split into segments 
by the merged onsets. A segment is a time unit for multiple note 
detection. To discriminate  of the lowest notes, the frequency 
resolution should be lower than 1 Hz. Therefore, 2  is chosen 
as the number of FFT points with a 44.1 kHz sampling 
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frequency. To enhance the higher-frequency partial amplitudes 
of the middle-range notes (notes over A4 (69) = 440 Hz), we 
use a finely designed high-pass filter (HPF) with a stop band 
gain = 0 dB, pass band gain = 12 dB, stop band edge frequency 
= 680 Hz, and pass band edge frequency = 2,850 Hz. Finally, 
we select 50 peaks from the spectrum. Experimentally, 50 
peaks are sufficient for the detection of 6 to 7 multiple notes. 
First, we select the 20 lowest frequency peaks starting from 0 
Hz. Then, the 30 highest amplitude peaks are added. In this way, 
we can avoid missing the low fundamental notes with small 
energy. 

B. Multiple Note Detection Step 
Among the 50 selected peaks, to reduce running time, our 

algorithm intelligently selects any three peaks that satisfy the 
following two conditions: )	4 −  >  −  ,  )	4 −  >  −  , 
where  , ,  are three different peaks from the spectrum. The 
factor 4 is an optimally selected value from the experiments 
(III-A, and III-B). Then, we calculate the possible values of the 
harmonic number (), , and . 
1) Triplet Multiple-Fundamental Frequency Estimation 
(MF0E) process 

Here,  is a physical quantity of a string instrument, which 
expresses the tension of strings. The th partial frequency is 
given by 
                                  = √1 +  ,                            (1) 
where  corresponds to the piano tuning frequency. 

The -triplet concept refers to three consecutive or one apart 
partial peaks that are used to simultaneously extract , , and . As shown in Fig. 2, the first three partial peaks are selected 
to calculate   using two pairings. By pairing  ⁄  and 
substituting (1), we can derive 
                                =  ()() .                                 (2) 

In addition,   can also be derived by pairing  ⁄ . 
Because   in (2) must be equal to   obtained from pairing  ⁄ , we can derive ( + 1)( +  +  +  + ′) = 0,            (3) 
where  = 4 − 2 − 2  ,                   (4)  = 20 − 15 − 5  ,             (5)  = 32 − 44 − 4  ,            (6)  = 16 − 63 −   ,              (7) 
and              = −44 .                                             (8) 
Furthermore,  =  − ,  =  −  + ,  =  −  +  − , 
and 	 =  −  +  −  + . 

By applying the companion matrix eigenvalue method [9], 
the solution of (3) is easily calculated. Among the many 
solutions, real positive decimals should be selected. In addition 
to the above (,  + 1,  + 2) -triplet set formulation, two 
other -triplet sets of (,  + 2,  + 3) and (,  + 1,  + 3) 
are considered simultaneously for the robust multiple-  
estimation algorithm. 

The tolerance intervals of the following ,  , and partial 
peak frequencies are sufficiently large to cover any type of 
piano considering the semitone intervals, which have about 6% 
higher frequency than the neighboring lower note. The 
harmonic numbers having a fractional-part greater than 6% of 
the integer-part are discarded because they are higher than the 
partial peak frequencies of the neighbor semitone notes. By 
inserting the selected   into (2), valid   values can be 
calculated inside the generous tolerance interval of [-0.0029, 
0.02], which covers the whole-note scale of any piano. Finally, 
by inserting , , and  into (1),  can be derived. The ±2% 
tolerance range of   is a non-overlapped interval of half 
semitone notes. The other is the allowable partial peak 
frequency, which also has a half semitone tolerance interval 
shifted from [-3%, 3%] to [-1%, 4.5%] (a bit shortened) for 
high rank partials. This process lasts until the end of possible -triplet peak selection. 
2) False Positive (FP) error eraser by Number of Harmonics 
and Amplitude Scores 

Trivial false positive error notes are discarded by the two FP 
error eraser blocks. The threshold values in both blocks are 
optimized with the training dataset. As shown in Table I, there 
are minimum numbers of valid harmonics, which are examined 
in the true positive samples on each octave. These threshold 
values are piano model free. Also, the amplitude score values of 
each note are set by summing the amplitudes of the limited 
numbers, which are generated after three process steps: 
spectrum normalization (max = 1), linear interpolation 
considering two neighbors, and spectral smoothing using 
Dresslers’ method [10]. To maximize the overall system 
performance, the threshold score values for each note are 

 
Fig. 1.  Flow chart of the overall piano note onset transcription system. 

 
Fig. 2. -triplet of Steinway & Sons piano 440 Hz (A4) note. 

TABLE I 
CRITERIA FOR FP ERROR ERASER BY NUMBER OF HARMONICS 

Midi note 
number 

Criteria for acceptance 
(# of detected partials/first # of harmonics) 

21-38 5/7   
39-48 4/8 
49-67 3/6 
68-83 3/4 

84-108 3/3 
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empirically set to be the 20th percentile of the true positive pitch 
candidates. 
3) B Estimation by Sequentially Additive Partial (SAP) 
process 

From the previous triplet MF0E process, we obtain the 
number of pitch candidates (), along with an  sequence and  th partial frequency (  ) sequence per candidate. Using 
equation (1), we can obtain the local estimation of 
inharmonicity coefficient  that is directly derived from the th observed partial frequency 	as 

                             =   =   ,                        (9) 
where we substitute τ = 1 ⁄ 		 for simplicity. The joint 
estimation of   and   is performed by minimizing the 
following error function: 
                      E, 	 = ∑  −  .                      (10) 

To give more weight to high-rank partials, the   term is 
multiplied in the error function. Here,   and   represent the 
start and the end harmonic numbers, respectively, and these 
numbers are composed of non-redundant integer numbers by 
selecting the maximum amplitude peak from the three different -triplet sets. After inserting (9) to (10), the minimum point of 
(10) with respect to  and  can be derived by 

     ,	 = 0 ⟶  = ∑  ∑   ,                     (11) 

,	 = 0 ⟶  = ∑ ∑  .                        (12) 

By inserting (11) into (12) and substituting  =  ⁄ =√1 + , we can obtain analytic solution 1 as 

													 = ∑  ∑  ∑ () ∑  ∑ () ∑  ∑   .                    (13) 

Next, by inserting (13) into (12), we obtain . 
However, the maximum harmonic number in the partial 

sequence from the triplet MF0E process is limited. Because the 
partial frequency error is larger for the high-rank partial than 
the low-rank partial originating from the estimation error of , 
higher rank partials should be added to estimate a more 
accurate value of . To accomplish this, high-rank partials are 
added to the given  -triplet partial sequence by the max 
amplitude peak selection in the tolerance range of [ ± 0.4]. 
An interval of ±0.4 is selected to give both non-overlapped 
and piano independent tolerance. In the isolated note case, five 
additional partial peaks are selected in a single iteration. In 
polyphonic music, only one additional partial peak is added to 
the existing partial peak sequence per iteration because of the 
overlapped partial problem. To verify the effectiveness of 
partial weights, the error function without the  term is also 
examined as analytic solution 2. As shown in Fig. 3, as the 
number of iterations increases, the estimated value of  
obtained from analytic solution 1 gradually approaches the 
ground truth. However, analytic solution 2 stops increasing 
after iteration 3, with a large gap between the estimated value 
and the ground truth value of . 
4) FP error eraser by (, ) Thresholding  

Fig. 4 presents the normalized probability density of the true 
positive piano note on the (,) plane. The 0.1-level-contour 
of the normalized probability density, whose level is 
experimentally tuned from the training dataset, is used as the 
threshold of the (,) pair for FP erasing. In the example of 
note D4 (62) in Fig. 4, its multiplying notes (D5 (74), and A5 
(81)) exhibit the distinguished distribution of B. This shows the 
possibility of filtering out false positive pitch candidates using 
the (,) pair. 
5) FP error eraser by Repeat Note Detection 

Finally, in this block, we discriminate a decaying sound note 
from a repeat note by checking the following two conditions:  )	(, ) > 	 ∗ (,  − 1),  )	(, ) > 	 ∗ (,  − 1), 
where (, ) = ∑ (, )  and (, ) = 	(, ) ,  : 
note number,  : segmentation time index, and ,  : a constant 
derived from the training dataset. 

III. SIMULATIONS 
The performance of the proposed algorithm was tested using 

different databases and was measured in two experiments. 
Table II summarizes the tolerance intervals of Triplet-SAP 
variables, which are applicable to different pianos because they 
were selected based on the theoretically calculated semitone 
frequency interval ratio, generous whole-note scale min-max  
values, and general integer multiple harmonics locations. 

 
Fig. 3.  B value update by SAP process. 

 
Fig. 4. Normalized probability density of true positive piano note  

on the (,) plane drawn by gray-scale contour map. 

TABLE II 
TOLERANCE INTERVAL FOR TRIPLET-SAP VARIABLES 

Process Variables Tolerance Interval 

Triplet 
MF0E 

fractional part of  ±6% of round(n)  ±2% of Equal Temperament (ET) 
note frequency.  -0.0029~0.02  -1%~4.5% of n multiple ET note freq. 

SAP   ± 0.4 
 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

4

A. Experiment 1 -  Estimation on Isolated Notes 
For this test, recordings from 35 synthetic isolated notes (A0 

(21)-G3 (55)) [11] and 34 real isolated notes (Bb0 (22)-G3 (55)) 
[12] were used with ground truth  values of synthetic tones 
from Rauhala et al. [1]. We reused the test results obtained from 
their paper, as shown in Table III. In this isolated notes’ 
experiment, four FP error eraser blocks are not needed because 
of the exact pitch from the triplet-SAP algorithm. The 
triplet-SAP algorithm with analytic solution 1 outperforms the 
inharmonic comb filter (ICF) and PFD algorithms in terms of 
the RMS error and the running time because of the high-rank 
partial emphasis term and analytic solution, respectively. 
Additionally, the PFD algorithm has a fluctuating  curve over 
the A#4 (70) note [3]. This makes it impossible to apply this 
algorithm directly for the transcription system. Even the most 
recent  estimation algorithm that is based on the NMF method 
performs more accurately in terms of RMS error than the 
proposed method, the speed is very slow. Moreover, this NMF 
algorithm requires finely tuned fundamental frequencies for the 
a priori initialization of NMF learning. When this prior 
knowledge is not provided, the NMF algorithm exhibits poor 
performance [13]. Thus, this NMF algorithm cannot be used as 
a standalone   estimation system. Because of the unknown 
ground truth  values in real-tone simulations, it is impossible 
to make a direct comparison of the RMS deviation obtained by 
the proposed algorithm and other systems. 

B. Experiment 2 - Real Piano Transcription  
This experiment was performed on the MIDI Aligned Piano 

Sounds (MAPS) [14] five instrument sets (Yamaha, Steinway 

& Sons, Steingraeber, Bosendorfer, and Hybrid). We randomly 
selected 12 files and extracted polyphonic music from the first 
interval of [30sec~2min] to form a total of about 14 minutes per 
piano. Therefore, the total music length is about 70 minutes.  

We used five-fold cross-validation for the experiment: to test 
on the dataset of a single piano model, we tuned the threshold 
values for four FP error eraser blocks (II-B-2, II-B-4, and 
II-B-5) using the dataset from the remaining four piano models. 
This process was repeated for all five piano models. Figure 5 
shows that the  value curves of five piano models are similar. 
Therefore, it is possible to extract generalized model of piano 
inharmonicity.  

Some of previous works on automatic piano transcription 
used spectro-temporal feature extraction with moderate 
frequency resolution and time dynamics concerning temporal 
partial envelope transition of attack–decay–sustain–release 
(ADSR) [15], [16]. On the contrary, we are interested in 
multiple note detection based on delicate modeling of piano 
inharmonicity using high frequency-resolution spectrum. 
Therefore, we selected the Benetos’ method [7] for 
performance comparison among multiple note estimation 
algorithms [15], [16], [5]-[7]. Both the Benetos’ system and our 
system have similar processing steps, and they use similar type 
of feature extraction.  

For performance-evaluation, we used both f-measure and 
accuracy [15]. These criteria values were also used in the MF0E 
task 2 (e.g., piano note onset only transcription) of the Music 
Information Retrieval Exchange (MIREX) competition. 

Before experimenting on the test set described previously, 
the performance was checked with the MAPS Disklavier 
isolated random chord set with note level 5. The f-measure 
values were 0.72 and 0.70 with the proposed system and the 
Benetos’ system [7], respectively. In this real music note onset 
test, the proposed system with analytic solution 1 has 
outperformed his method [7] by 4.41% on average (Table IV). 
In addition, our system shows smaller standard deviation of 
accuracy among five piano models, which supports that our 
system is less sensitive to the change of the piano model. 

IV. CONCLUSIONS 
In this letter, we presented a novel method to estimate the  

value of piano sounds. Compared to previous methods, our 
algorithm show superior accuracy and speed in an isolated note 
test with less prior knowledge. In addition, it was successfully 
combined into an automatic piano transcription system, which 
exhibits both high accuracy and fairly good generalization 
abilities. The proposed automatic transcription system might be 
extended to other string instruments in the future. 

 

 
Fig. 5.   values estimated by analytic solution 1 on different pianos. 

TABLE IV 
MAPS TEST SET NOTE ONSET TRANSCRIPTION ACCURACY (%) 

 Yb S&Sb Sb Bb Hb Avg. Std. 
Benetosa[7] 28.37 27.83 26.91 22.73 10.85 23.34 7.32 
Proposeda 27.04 32.19 29.39 22.82 27.32 27.75 3.44 

aThe accuracy was calculated in the limited key range 36 (C2)-95 (B6), since 
the Benetos[3] system is designed for these notes only. 
bY: Yamaha, S&S: Steinway & Sons, S: Steingraeber, B: Bosendorfer, H: 
Hybrid 

TABLE III 
AVERAGE RMS ERRORS AND AVERAGE RMS DEVIATIONS  

WITH TIME CONSUMPTION 

Method 
Synthetic tones Real tones 

RMS 
error 

Running 
time 

RMS 
deviationa 

Running 
time 

ICF[17] 1.19 × 10 11.4s 1.73 × 10 313.9s 
ICF+[1] 1.16 × 10 24.1s 1.88 × 10 946.5s 
PFD[1] 1.19 × 10 7.0s 1.66 × 10 58.4s 
NMF[3] 5.85 × 10 420.0s 4.54 × 10 420.0s 

Proposed 1.14 × 10 2.0s 7.54 × 10 11.8s 
aDifference obtained from manually estimated values. The exact inharmonicity 
coefficient is unknown. 
bGround Truth  values were derived from the manually selected peaks. 
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