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Learning One-to-Many Mapping With Locally
Linear Maps Based on Manifold Structure

Do-Kwan Oh, Sang-Hoon Oh, and Soo-Young Lee

Abstract—This letter proposes a new method to realize a non-
linear mapping of one-to-many correspondences. Assuming that a
small number of training pairs are given with their actual corre-
spondences, each tangent space is locally constructed on a subman-
ifold around each labeled sample. Moreover, the linear transfor-
mation between paired tangent spaces is derived by solving an op-
timization problem, which is designed to bring locally linear maps
into closer proximity in each class. Finally, a global nonlinear map-
ping is realized by combining these locally linear maps. In simu-
lations of an S-curve to Swiss-roll, a lip to speech, and room im-
pulse response to position of microphone mappings, the proposed
method shows the remarkable mapping ability.

Index Terms—Lip reading, lip-to-speech mapping, manifold
learning, monaural source localization, one-to-many correspon-
dence.

I. INTRODUCTION

I N most cases, human sensory data resides in very high
dimensional spaces; however, the underlying systems that

generate this data may have relatively low degrees of freedom.
From this hypothesis, it has been assumed that human sensory
data is likely to lie on a manifold embedded in a high-dimen-
sional space. Many nonlinear dimension reduction algorithms
based on the common perspective about the structure of human
sensory data, including LLE [1], ISOMAP [2], and LTSA [3],
have been proposed. This manifold concept was applied to
learn the locally linear map between two image datasets with
one-to-one matched pose variations [4].
In real environments, multimodal datasets such as lip images

and speech signals from a camcorder assume a one-to-one cor-
respondence along time. However, human can make various
sounds with a similar lip shape because the lip is only one part
among lots of articulators in the speech production mechanism.
Therefore the general mapping from the space of visemes to the
space of phonemes has a one-to-many correspondence. Also,
there are lots of possibilities of one-to-many correspondences in
other datasets. Thus, a one-to-many mapping algorithm should
be realized.

Manuscript received May 07, 2011; revised June 14, 2011; accepted June
17, 2011. Date of current version July 19, 2011. This work was supported by
the Basic Science Research Program through the National Research Foundation
of Korea (NRF) through the Ministry of Education, Science and Technology
(2009-0092812). The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. H. Vicky Zhao.
D.-K. Oh is with the Department of Bio and Brain Engineering, KAIST, Dae-

jeon 305-701, Korea (e-mail: origell@neuron.kaist.ac.kr).
S.-H. Oh is with the Department of Information Communication Engineering,

Mokwon University, Daejeon, Korea (e-mail: shoh@mokwon.ac.kr).
S.-Y. Lee is with the Department of Electrical Engineering, KAIST, Daejeon

305-701, Republic of Korea (e-mail: sylee@kaist.ac.kr).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/LSP.2011.2161578

This letter proposes a new method of one-to-many mapping
by combining a clustering scheme with a one-to-one mapping
scheme [4]. The contributions of this letter are the realization of
mapping between two datasets with a one-to-many correspon-
dence and the demonstration of two real life application.
Section II introduces a manifold-constrained map [4] and

the overall mapping structure proposed in this letter. Section III
defines an optimization problem with a clustering scheme.
Section IV presents three experiments and their results. Finally,
Section V provides the conclusion.

II. MANIFOLD-CONSTRAINED MAP

Let and
be the two different types

of training datasets. Among the training datasets, pairs
of matched data are given with their actual cor-
respondence: and

, where and
. At each labeled sample and , their corresponding

local tangent spaces with basis matrices of rank
and of rank are constructed on the lower-di-
mensional submanifolds, which include the unlabeled training
samples surrounding and , respectively. Our ultimate
objective is to determine linear transformations between the
paired th local tangent spaces. Therefore, a locally linear map
[4] is defined as

(1)

which is linearly transformed along the pair of th local tan-
gent spaces. The inverse map, , is necessary for recovering
the local coordinates to the global coordinate. Most manifold
learning techniques have a common drawback, which is hard to
find an inverse map. This is the reason why we substitute the
simple linear tangent space for nonlinear dimension reduction
technique to represent each local geometry.
A global nonlinear mapping function [4] is approximated by

combining the locally linear maps of (1) as

(2)

Weight is responsible for the contribution of the th linear
map to . Because it is difficult to evaluate the exact
value of , we use a value that is inversely proportional to the
distance between and .
Fig. 1 shows the proposed mapping structure and notations.

Five linear maps are exemplified and two candidates for the final
mapping output are illustrated with two colored classes which
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Fig. 1. Overall mapping structure.

are assigned from a cluster scheme. A detailed discussion of the
clustering scheme is provided in Section III.

III. OPTIMIZATION PROBLEM

The most natural design for learning is to minimize the
discrepancy of each linear map that belongs to the same class.
In this sense, the cost function is proposed as

(3)

which is a trace norm of the weighted covariance of different
linear maps in the same class. Here, is a set of for

. In addition, denotes a set of class
indices of tangent spaces that contain , and denotes a
set of tangent space indices involved with the th class. Thus,

is normalized to one for each .
Contrary to the cost function of [4], (3) adopts a clustering

scheme for one-to-many mapping. This is the main difference
between [4] and the proposed method. The class information

in (3) is given by the -means algorithm on a geodesic
metric driven from the entire training data . In the presence of
a metric, geodesics are defined to be (locally) the shortest path
between points in the space.
For modeling the distribution and the size of each tangent

space, two initial metric matrices are designed using parameters
and respectively. gives the number of training samples

that belong to one tangent space and describes the number of
tangent spaces that are involved with an input sample. The final
metric matrix is computed by superimposing the previous two
metric matrices.
We can find the minimum of (3) with the condition

(4)

From (3) and (4), linear matrix equations are given by

(5)

Fig. 2. Training data for the S-curve and Swiss-roll mapping. (a) X; (b) Y; (c)
U; (d) V.

where denotes the index of tangent spaces overlapped with
the th tangent space in the same class. Matrices , , ,
and are derived from the data itself as

(6)

Thus, (5) can be solved since it consists of linear matrix equa-
tions with unknown matrices , . In this
letter, the left matrix division operator, mldivide , is used as
a linear equation solver in MATLAB simulations.
In the proposedmethod, each tangent space has a unique rank.

Even if the initial rank is sufficiently large, the coefficients cor-
responding to superfluous intrinsic coordinates are trained as
close to zero in a linear transformation matrix. Thus, the pro-
posed algorithm also learns an effective relationship between
paired tangent spaces.

IV. EXPERIMENTS

A. S-Curve to Swiss-Roll Mapping
The first experiment is an S-curve to Swiss-roll mapping

with artificial data. We consider two types of training datasets,
namely, [Fig. 2(a)] and [Fig. 2(b)]. The color coding
information shows the correspondence between and . It
is noteworthy that the Swiss-roll is color coded by height, not
rotation. Thus, the correspondence between the S-curve and the
Swiss-roll is maximally one-to-three and minimally one-to-one.
The number of samples in and is 16,000 ,
and their dimension is set to 3 . In this simulation,
only 5% of are randomly selected as [Fig. 2(c)], and the
corresponding are chosen as [Fig. 2(d)].
Fig. 3(a) shows 4000 test samples of Swiss-roll treated as the

target for the mapping output. Without applying any clustering
scheme, as shown in Fig. 3(b), the boundary between each class
will disappear and this blurring effect between classes will de-
stroy the entire data structure. Fig. 3(b) also coincides with the
result of [4]. This is the main problem that must be resolved
for one-to-many mapping and the reason why a clustering tech-
nique must be inevitably applied.
The proposed method uses the locally linear map defined as

(1). On the contrary, we adopt a baseline method which uses
only the labeled data as . All the other parameters
are identical to those in the proposed algorithm. This baseline
is the most appropriate for the verification of the mapping algo-
rithm. Fig. 3(c) is the simulation result for the baseline.
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Fig. 3. Test results for the S-curve to Swiss-roll mapping. (a) Target; (b)
without cluster; (c) baseline; (d) proposed.

Fig. 4. Distance error for the S-curve to Swiss-roll mapping.

Fig. 3(d) shows the result of the proposed method, which ap-
pears denser than Fig. 3(c). A mapping output is defined as (2).
Thus, the possible mapping position of the baseline,

, is limited within an area composed of the selected
samples ’s. As a result, the baseline method does not have
mapping outputs in the inter-class area. However the mapping
output of the proposed method can be more freely located on
well-distributed tangent spaces by the term.
The number of clusters could be three due to the maximal

one-to-three correspondence. However it is hard to get ideal
cluster boundaries exactly by an automatic clustering technique.
We ascertained that the ideal boundary information is success-
fully included when of the -means is 20. Also, the maximum
rank on each tangent space is set to 3. In the test phase, we only
need to reevaluate for each test sample. The closest candi-
date to the target becomes the final mapping output.
Under the assumption that elements of feature vectors are un-

correlated, we define the Normalized Mahalanobis distance by
, where is a di-

agonal matrix whose main diagonal entries are the variances of
each element over the whole training sample set and is the
feature dimension. Fig. 4 shows the average of the distances be-
tween the mapping outputs and targets for all test samples. The
x-axis represents the fraction of the labeled training samples.
The performance of the proposed method is better than that of
the baseline. It is noteworthy that the final mapping output is
closer to the target, although we do not use any target informa-
tion during the training procedure.
In the simulation, is calculated by . In Fig. 4,

each solid curve is drawn from , and the upper and lower
triangular bars are drawn from and , respectively.
Because the proposed algorithm is able to minimize the discrep-
ancy of each linear map , our method is more robust to

than the baseline method.

Fig. 5. Locally linear map from a lip tangent space to a speech tangent space.
(a) . (b) . (c) using

of the proposed method. (d) using of the without
clustering method.

Fig. 6. Distance error for the lip-to-speech mapping.

The parameters and , which were introduced in the
Section III, are related to local geometries of training samples.
is optimized from the reconstruction error defined as (see the

bottom of the page), where denote the th samples on the
th tangent space and denote the number of ’s. The av-
erages of over all are minimized at in the two
artificial data spaces and two real data spaces (lip and speech),
respectively. To simplify the modeling of local geometry, is
used only for the compensation of outlier samples which do not
have any neighbor labeled frame. Therefore is set to 1.

B. Lip-to-Speech Mapping
For more verification in real applications, we simulated the

lip-to-speech mapping using the CUAVE database [5]. The
dataset used in this experiment consists of the ten English
digits recorded five times by 36 speakers, and one record
among the five repetitions is used as a test set. The number
of training frames is 17 344 , and the number of
test frames is 4396. The lip feature is 20 delta features and 20
acceleration features from 20 static PCA coefficients extracted
from raw pixel (30 70) vectors. The speech feature is the 36
Mel Frequency Cepstrum Coefficients. In this experiment, the
maximum rank on each tangent space is set to 5 and the number
of cluster is set to 60 based on the number of pronouncing
English phonemes.
Fig. 5 shows an example of locally linear maps from a lip tan-

gent space to a speech tangent space. Let denote the fea-
ture samples which are involved on the 75th tangent space in the
lip dataset and denote the feature samples corresponding
to in the speech dataset. Fig. 5(a) shows the projection of

onto 2-D 75th lip tangent space. These samples are color
coded by left to right. Fig. 5(b) shows the projection of
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Fig. 7. Experimental environment and results for monaural source localization.
(a) At two different positions of blue dots, RIRs may be similar, because a direct
path and the first reflection path are same. (b) Distance error for the monaural
source localization.

onto 2-D 75th speech tangent space, which are treated as target
samples. Fig. 5(c) and 5(d) show the samples linearly trans-
formed by of the proposed and without clustering methods,
respectively.
In Fig. 5(b)–(d), each ellipse shows the outline of tangent

space and each arrow means the direction of color coding from
red to blue, which show the correspondence to Fig. 5(a). From
this experiment, we confirm that the proposed method can
learn the linear transformation (rotation angle and scale) better
than the without clustering method [4]. A correspondence error

measure can be also defined as

,

where denote the samples corresponding to in
speech dataset. From the fact that the correspondence errors of
Fig. 5(c) and 5(d) are 0.4003 and 0.7689, we can argue that the
proposed method is still better in numerical comparison.
Fig. 6 shows the mean of the normalized Mahalanobis dis-

tance between the mapping outputs and the targets for all unla-
beled training samples and all test samples, respectively. In this
figure, the dotted curves show the performances of one-to-one
mapping [4] without the clustering scheme. Even though this is
a real problem, the proposed method still shows better mapping
performances than the other methods.
If we assume a lattice with a spacing of between adjacent

points, an equivalent sampling of a 36-D unit hypercube would
require sample points. Since we have 17 344 training sam-
ples, the interval of evenly spaced samples in the speech
space is around 0.7625 by the calculation of .
Thus we can argue that a mapping output is located near the
target within a sample interval radius.

C. Monaural Source Localization

To demonstrate the benefit of the proposed method, we simu-
lated onemore real application, aRoom Impulse Response (RIR)
to Position of Microphone mapping. The relationship between
these two datasets is nonlinear, because sound reflection mech-
anism has a nonlinear operation. Moreover, symmetric rectan-
gular parallelepiped room structure causes one-to-many corre-
spondence between RIRs and positions.
The size of the recording room is . A single

source [red dot in Fig. 7(a)] is placed at (4.5, 1.5, 1.5). The
position of the microphone [blue circles in Fig. 7(a)] is uni-
formly shifted with 0.1 m interval along and directions in
the whole room. Therefore, total number of training samples is
3380 except a source-position. The heights
of the sound source and microphones are set to 1.5 m. The re-

flection coefficients of six walls are set to 0.4091. From these
settings, the acoustic RIR is easily obtained at each position of
blue circle by an image model [6]. The amplitude of FFT of RIR
is used as feature. All the other parameters for mapping algo-
rithm are chosen from the analysis of previous two applications
( , , the , the

, and the number of test frames is 676
made at random position in the room).
Fig. 7(b) shows the distance error for the monaural source lo-

calization experiment. Each curve is drawn by the average of
Euclidean distances between the positions of targets and map-
ping outputs for all test samples. In all conditions, the proposed
method gives us the best results. [7] shows the comparison be-
tween different sound source localization techniques, which are
proposed in the literature during the last decade. In [7], the
best performance reaches around 0.2 m. However, their sim-
ulation room size [3.4 5 (m)] is less than half of ours [7
5(m)]. Thus, we can argue that the source localization perfor-
mance of the proposed method has a similar resolution with
state-of-the-art techniques, even though our approach use only
single microphone instead of microphone array.

V. CONCLUSION

This letter proposed a new nonlinear mapping method for
one-to-many corresponding datasets. The potential of the pro-
posed method was demonstrated via an S-curve to Swiss-roll
mapping simulation. In addition, a lip-to-speech mapping and
a monaural source localization experiments were performed as
real applications. Because of the clustering scheme, the pro-
posed and baseline methods did not destroy the entire data struc-
ture. Moreover, the mapping results of the proposed method
were closer to the targets than the baseline. Even though the
datasets had great complexity as well as different characteristic
and intrinsic informations, the proposed approach still showed
better performance than the other methods. The performance
of the proposed method is robust to several parameters that are
difficult to determine. These characteristics greatly enhance the
efficiency of the proposed algorithm.
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