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Abstract—An Elman-type feedback SOM (EFSOM)) is a modi-
fied version of the standard SOM for temporal signal processing.
It was applied to various kinds of tasks so far, and it showed

good performance on temporal signal processing. By the way,
one of the major features inspired by the standard SOM is

to visualize given data structure into the two-dimensional plane
preserving its topology. Then, from the visualization point of view,
a working mechanism of the feedback SOM (FSOM), which is
an essential part of the EFSOW,, is investigated in this paper.
As a result of computer simulations, a trajectory of the winner
neurons is bifurcated, not overlapped between any two segments,
with the help of feedback pathways. This fact implies that the
FSOM can deal with the past history;, i.e., the context information,
appropriately. Furthermore, when continuous pattern is used for
training; it is found that signal processing developed in the SOM is
quite similar to that for an A/D converter based on the discretized
reference vectors.

I. INTRODUCTION

Originally, a self-organizing map (SOM) is a neural net-
work model based on the biological visual systems [1]. Since
there are no dynamical elements in it, the standard SOM
cannot deal with any time-variant information intrinsically. A
simple way to overcome this disadvantage is to convert a given
temporal pattern to a spatial pattern with unit-delay elements
as an input signal. Another way is to replace static neurons
with dynamic neurons, e.g. leaky integrators [2], [3]. Also,
providing feedback pathways around the competitive layer is
worth considering [4].

Following to the above-mentioned trend in temporal signal
processing by SOM architecture, an Elman-type feedback
SOM (EFSOM) was proposed [5]. It was applied to various
kinds of tasks, including a Braille recognition task [5], an
on-line character recognition task [6], [7] and so on, and it
showed good performance on temporal signal processing for
both temporal elasticity and spatial displacement.

By the way, one of the major features inspired by the
standard SOM is to visualize given data structure into the two-
dimensional plane preserving its topology. Even though the
EFSOM has a such distinct feature, it has been concentrated
on its performance mainly. It is true that an analysis based
on the neuro-bar model [8] was carried out, but its approach
was not sufficient to make clear the mechanism. Then, from
the visualization point of view, a working mechanism of the
feedback SOM (FSOM), which is an essential part of the
EFSOM, is investigated in this paper.
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Fig. 1. A schematic diagram of feedback SOM (FSOM).

In the following part, an overview of the FSOM for tempo-
ral signal processing is explained in Section II. Secondly, some
applications we tried in the preceding studies is presented in
Section III. Thirdly, some computer simulations are carried out
in Sections IV and V. Fourthly, discussion from the viewpoints
of the further considerations is made in Section VI. Finally,
conclusions from this study are summarized in Section VII.

II. FEEDBACK SOM

Fig.1 shows an architecture of the FSOM. It is an essential
part of the EFSOM, and it corresponds to a modified version
of the original FSOM proposed by Horio and Yamakawa [4].
Basically, it is a standard SOM which has feedback pathways
around the competitive layer. It consists of three layers, i.e.,
an input layer x(t), a competitive layer y(t), and a state layer
h(t). Each layer has L, M, M neurons, respectively. Then,
their signal transmission equations at time ¢ are defined as
follows:
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where I(t) is a netinput layer composed of both a(¢) and h(t),
j* is an index number of the winner neuron in the competitive
layer, 8 is a weighting constant for referring the past history,
and 7 is a decay constant of the past history ! .

In the training phase, all reference vectors w; between the
net input layer I(¢) and the j-th neuron in the competitive
layer y(t) are developed as,

wji(n) = wji(n — 1) +nA(j, j) {Li{t) —wji(n — 1)},
(6)

where 7) is a constant for training speed, A(7, j*) is a neighbor-
hood function whose center is the coordinates of the winner
neuron j*. Both of them are provided smaller and smaller
as the training epoch number n increases. In short, training
procedures for the FSOM are as the same as that for the
conventional standard SOM, i.e., the reference vector w;« for
the winner neuron j* is developed to approach the applied
input vector & more and more.

III. OVERVIEW OF PRECEDING STUDIES

As mentioned above, the EFSOM has been applied to
various kinds of tasks. First of all, a Braille recognition task
was tried [5]. Even though only four kinds of city names
were adopted, good performance on temporal signal processing
for both temporal elasticity and spatial displacement was con-
firmed. Next, an on-line character recognition task was tried
[6], [7], and the number of training samples was increased. In
general, above-mentioned modification makes training more
difficult. Its major reasons are as follows:

1) Only penpoint information is given while we are
writing a character, so it is required to preserve its
past history.

2)  The initial state of the EFSOM is the same as a start
point for all training samples, so it is required to
discriminate them each other based on different inner
representations.

It is noticeable here that these aspects are distinct nature for
temporal signal processing. In the series of previous studies, an
idea called multi-winner neuron style [6], [7] was introduced,
and good performance on temporal signal processing for
both temporal elasticity and spatial displacement was also
confirmed.

As described above, it has been concentrated on its per-
formance mainly. But one of the major features inspired by
the standard SOM is to visualize given data structure into the
two-dimensional plane. Then, from the visualization point of
view, a working mechanism of the FSOM is investigated.

'Tn other words, ~ corresponds to a time constant 7 for first order decay
element : v = exp(—1/7) .
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Fig. 2. A temporal pattern used for training.
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Fig. 3. Actual structure of the feedback SOM.

IV. COMPUTER SIMULATIONS [I]
— How TO TRAIN THE TEMPORAL PATTERNS —

A. Methods

In order to investigate a working mechanism of the FSOM,
a simple temporal pattern is prepared for training. As can be
seen in Fig.2(a), it is divided into two main parts. The former
one is a constant part to converge on a steady state, which
corresponds to the start point mentioned above. It is a null
input part for 100 steps long, and it plays an important role in
removing any clues for identifying the objective characters in
advance. In contrast, the latter one is a cyclic part in the range
of [-1.0,1.0]. It is a sinusoidal input part, whose amplitude
A is set to 1.0, for 32 steps long. According to Fig.2(b), the
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Fig. 4. Results of computer simulations [I] — Trajectory of the winner

neurons.

cyclic part consists of four 8-step-long segments. The first two
segments are positive, while the last two segments are negative.
From the viewpoint of alignment of applying values, each two
segments are symmetry. Then, they are referred to as forward
segment and backward segment hereafter, respectively.

By the way, digital patterns whose components are discrete
(0/1) have been adopted in the preceding studies mainly. Then,
an effect of analog patterns whose components are continuous
are adopted to identify the behaviors against the intermediate
values.

In this study, a single temporal pattern is used for training,
so the FSOM is designed as L = 1 and M = 400 (=20x20).
Fig.3 is an actual structure of the FSOM used in this study, i.e.,
a substituted version of the actual parameters in Fig.1 for easy
to understand. The other parameters are determined as 3 =
0.0014 and v = 0.2 following the result of some preliminary
experiments. In order to compare their performance, the same
structure of the standard SOM without any feedback pathways
is also prepared.

B. Results

1) Trajectory of the Winner Neurons: After the training
phase for the FSOM is completed, a trajectory of the winner
neurons in the 20x20-wide competitive layer is observed.
Fig.4 shows an example of trajectories when the temporal
pattern used for training is applied. Each filled circle shows
the location of the emerging winner neuron. At first glance,
it is found that the trajectory is bifurcated, not overlapped
between the forward and backward segments. In other words,
it is said that the FSOM can train the temporal pattern
successfully, which we have intended in advance, with the help
of feedback pathways. Although not shown here for brevity, a
trajectory of the winner neurons for the standard SOM is not
bifurcated, because it cannot discriminate between the forward
and backward segments intrinsically.

2) Inter-Neuronal Weights Developed through Training: As
a next step, behavior of the FSOM is considered. In general,
responses of all neurons are determined uniquely based on
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Two kinds of weights focused on.

both the applied input signal and the inter-neuronal weights.
It is obvious that the applied input signal is the same as that
used for training. Then, acquired inter-neuronal weights are
observed in two ways. One is the weights w;; from the single
input neuron z; to all neurons y;(j = 1,2,---,400) in the
competitive layer. As mentioned in Section II, the reference
vector of the winner neuron is developed to approach the
applied input vector, therefore it must be easy to identify
where the winner neuron will appear. The other is the weights
wj,i+1 from all neurons h; (i = 1,2, --- ,400) in the state layer
to a single neuron y; in the competitive layer. In this case,
there are several versions depending on the neuron y; which
is selected in the competitive layer. If arbitrary two weights
wjry and wjrq are the same strength under the condition
j" # 3", difference between the weights wj/ ;41 and wjr ;41
fori=1,2,---,400 must be significant to discriminate them
each other from the viewpoint of preserving past history, i.e.,
context information. For reference, above-mentioned two kinds
of weights are summarized in Fig.5(a)(b) with the bold lines,
respectively.

Fig.6 is the former case, and it is conformed that all weights
are aligned smoothly from -1.0 to 1.0 based on their strength.
Its tendency is changing along with the diagonal direction,
because spatial resolution of the competitive layer will be
magnified.

Fig.7 is the latter case, and some examples shown in
Fig.6(a) are selected because they belong to the same category.
It is clear that distributions of weights are different each other,
so this fact suggests that the context information the FSOM
possesses here is preserved appropriately.

3) Other Extra Trials Carried Out in This Study: Accord-
ing to Fig.6, the applied continuous input signal is compared
with all discretized reference vectors, and then a neuron
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whose reference vector is the closest is selected to become
a winner neuron. A series of these operations is quite similar
to that for an analog-to-digital (A/D) converter, so an inverse
conversion is tried based on the weights from the winner
neurons in the competitive layer to the single input neuron.
As can be seen in Fig.8, it is obvious that the applied input
signal is reconstruct appropriately. In this case, discretization is
developed adaptively through training, so that each step width
must be optimized just fit for the temporal pattern used for
training.

V. COMPUTER SIMULATIONS [II]
— ANALYSIS OF ACQUIRED WEIGHTS —

A. Methods

In order to investigate the acquired weights developed
through training in Section IV another temporal patterns with
different amplitude A are prepared. Its range is varied from
0.2 to 2.0 at 0.2 intervals. It is noticeable here that all of them
except A = 1.0 are completely new to the trained FSOM.
Then, in order to estimate its working mechanism, responses
of the FSOM are observed.

978-1-4799-5955-6/14/$31.00 ©2014 IEEE 547

SCIS&ISIS 2014, Kitakyushu, Japan, December 3-6, 2014

(a) 7 = (12,1)

(c) j = (16,7) (d) j = (20,9)

Fig. 7. Results of computer simulations [III] — Distributions of weights
'lUj,i+1(Z. = 17 27 e 7400)

0.5

-1.0
Fig. 8. Reconstructed input signal based on D/A conversion.
B. Results

Fig.9 shows the trajectories of the winner neurons when
various kinds of temporal patterns are applied to the trained
FSOM. It is obvious that the start point is the same as that
shown in Fig.4.

In the cases for A < 1.0, some neurons are assigned as the
common winner neuron for succeeding several input signals,
and there are no winners at the top/bottom of the weight
landscape shown in Fig.4. It is a “quantization effect” based
on the A/D conversion as mentioned above, because each step
width is determined through training automatically to compare
with the applied signal. Then, the winner neuron tries to climb
up the hill, but it turns to climb down before reaching the top,
and vice versa.

In the cases for A > 1.0, in contrast, the winner neuron
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climbs up the hill rapidly and stays at the top of the weight
landscape for a while. It is a “saturation effect” easily inspired
by Fig.6. And then, it turns to climb down the hill.

Generally speaking, staying at a certain point results in
losing its context information, which is essential to preserve its
past history. Then, in both extreme cases, the most significant
advantage the FSOM possesses will be disappeared.

Also, it is said that each step width must be determined
to fit for the applied temporal pattern. Therefore, the trained
FSOM can deal successfully, when the temporal pattern used
for training is applied. But the trained FSOM might not
deal appropriately, when any untraining temporal patterns are
applied.

VI. DISCUSSION

In general, numerous studies in the field of SOM have
been undertaken by a lot of researchers so far. But most of
them seem to be adopted discrete patterns. For example, some
of them are binary patterns (0/1), and the others are bipolar
patterns (-1/1). On the contrary, in order to investigate the
working mechanism of the FSOM, a continuous pattern in the
range of [-1.0, 1.0] is adopted in this study. Even though its
original motivation is quite simple, and it is just to identify
the behaviors against the intermediate values, various kinds of
fruitful results have been found.

At first, trajectories of the winner neurons in the FSOM are
bifurcated between the forward and the backward segments.
Its strategy is easy to understand for preserving the context
information, and it also reminds us a hysteresis loop often
used in the field of electromagnetic theory. In other words,
the standard SOM cannot preserve the context information
intrinsically, so trajectories of the winner neurons are not
bifurcated.

Secondly, signal processing developed in the SOM through
training is quite similar to that for the A/D converter. If a
continuous input signal is applied to the trained SOM, it is
compared with all discretized reference vectors in it. And then,
a neuron whose reference vector is the closest is selected to
become a winner neuron. As mentioned above, a series of
these operations is quite similar to that for the A/D converter,
Once discretization of reference vectors is made successfully,
each applied signal might be corded as a location where the
corresponding winner neuron will be appear. But one of its
disadvantages is meaningless against any untraining patterns.
As can be seen in Fig.9, this is why discretization is not always
fit for any applied patterns.

VII. CONCLUSIONS

In this paper, a working mechanism of the feedback SOM
(FSOM) is investigated from the visualization point of view.
As a result of computer simulations, a trajectory of the
winner neurons is bifurcated, not overlapped between any two
segments, with the help of feedback pathways. It is found that
the FSOM can deal with the past history, i.e., the context infor-
mation, appropriately. Furthermore, when continuous pattern
is used for training, it is also found that signal processing
developed in the SOM is quite similar to that for an A/D
converter based on the discretized reference vectors.
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