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Abstract. In this paper, we propose a symmetry axis detection net-
work that can correct asymmetric parts by itself. Our network compares
directional blurring of omnidirectional image edges, which plays a sig-
nificant role in asymmetry detection and correction. The output layer
consists of oscillatory neurons, which activates symmetry axes one by
one. Given activated symmetry axis, network estimates the difference of
image edges and generates a masking filter to cover the asymmetric parts.
The network reconstructs ideal mirror-symmetric image with complete
symmetry axes by self-correction. Our network models flexible symmetry
perception of high-level cognitive function of human brain.

Keywords: Symmetry axis detection, asymmetry reconstruction, asym-
metry correction, oscillator network.

1 Introduction

Symmetries are everywhere. We can easily detect them surrounding us, and
we perceive them to be natural and intuitive. This is explained by mammals’
preference for symmetric patterns in visual information processing [I]. Along
with these biological evidences that support importance of symmetry axes in
visual information processing, several practical approaches have been developed,
which utilizes symmetry axes for visual information processing of objects or
faces [2].

Transformational approaches [3] discover underlying structure of symmetries
by comparing local pixels of the images [I]. Local region-wise comparisons re-
quire excessive search, which takes too much computational cost. As a solution,
many symmetry detection methods use spatial filters to reduce the resolution
of images, and determine symmetries in hierarchical stages by comparing coun-
terparts of symmetry axes [4]. Filtering reduces computational cost. Apart from
those technical approaches, artificial neural networks (ANNs) model biologically
plausible algorithms. Especially, Fukushima et al. [5] successfully modelled early
visual process of humans for symmetry axis perception.
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Those symmetry axes detection models are vulnerable to asymmetric corrup-
tions. If there exists any asymmetric parts in an image, models may not be able
to detect underlying symmetry axes. Therefore, correction of asymmetries plays
a critical role in symmetry detection process. Human’s ability to perceive domi-
nant symmetries against envirionmenal distractions is also a biological evidence
of asymmetry correction in visual processing mechanism.

In this paper, we propose a symmetry axes detection network that can correct
asymmetries by itself. We detect symmetry axes by blurring an image with
directional filters. Then we correct asymmetric parts with a mask generated
by back projection of asymmetric measure along the symmetric axis activated
by oscillator network. As a result, underlying symmetry axes are detected and
image of ideal symmetry is returned.

Rest of the paper is organized as follows. In section 2, we describe our neural
network model for symmetry detection. In section Bl experimental results are
presented. We end our paper with conclusion in section [

2 Method

Our method uses a recurrent neural network that consists of mainly two parts:
symmetry axis detection (part 1) and asymmetry correction (part 2).

The proposed method differs from Fukushima’s or other symmetry axes de-
tection methods in three approaches.

Firstly, we use sliced-cone filter for directional image blurring. Each sliced-
cone filter displays unique orientations. The orientation of spatial filter helps
not only symmetry detection, but also asymmetry correction.

Secondly, we alternatively activate symmetry axes one at a time with oscillator
network. The serialization of multiple symmetry detection enable post-processing
respect to individual symmetry axis.

Thirdly, we combined both symmetry detection stage and correction stage in
the network. We used the proposed sliced-cone filters for asymmetry detection,
and reconstructed perfect symmetries from the original image. As a result, we
could significantly improve the robustness of symmetry detection against noise
and partial distortions.

Overall network is described in Fig. [[I Symmetry axes are detected in part
1. Part 2 corrects asymmetries in the image and give feedback to part 1. The
network recurrently iterates until convergence.

2.1 Part 1 - Symmetry Axes Detection

Edge Extraction (Ug and Ug layer) After input image is presented in layer
Uy, a layer of photoreceptors, it is fed to Ug layer which resembles lateral genic-
ulate nucleus cells (LGNs) [5]. As in [5], Ug layer consists of two cell planes, one
for off-center-on-surround cells and the other for on-center-off-surround cells.
Each cell plane is responsible for extracting positive and negative contrasts in

brightness respectively. The output of Ug layer is denoted by Uék) (m,n), which
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Fig. 1. The architecture of self-correcting symmetry detection network

is in correspondence with ug(n, k) of equation (1) in [5]. Here, k is the index for
off-center (k = 1) and on-center (k = 2) cell-plane, and (m,n) is the image coor-
dinate. In Ug layer, we extract oriented edges from Ug layer. The response of Ug
layer is denoted as U ék)(m, n), which is in correspondence with ug(n, k) in equa-
tion (2) in [5]. We added additional cell-plane U""™(m,n) = Z,ﬁil Ugc)(m, n),
which represent the whole edge extraction result.

Sliced-Cone Filtering (U Layer). For symmetry axis detection, Fukushima’s
network compares blurred orientatinal edges. In our proposed network, we intro-
duce sliced-cone filters where we assign orientation property for each filter. Since
our proposed filter displays orientation properties, we do not need orientational
edges of input data like Ug of Fukushima’s. Instead, we blurred extracted edges
in layer U™ (m,n).

The sliced-cone filter for the kth orientation ax = 2;;’“ is given by

F®) (m,n) = F$ (m,n) x Fo(m,n), (1)

(2)

F® () = 4 L [atan2(n,m) —ax] < g and 0 < Vm? 4+ n? < L
S ’ 0 otherwise

is the slice filter for orientaiton ay,

Fo(m,n) = (L= \/212 %) (3)
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is the cone filter with radius L, and ¢() is defined by ¢(a) = max(a,0). Sliced-
cone filter has a shape of cone filter that is divided into K slices. By cutting
cone filter into slices, we assign an orientation angle to each slice of filter for
detecting corresponding directional edges. Finally, filter response, Uék) (m,n), is
computed as

U Z Z Fékcm n') x U™ (m +m',n+n'). (4)

n'=—Lm/=—L

Symmetry Axis Detection (Uy and Ux Layer). For symmetry axis de-
tection, we use same principle as [5]. If an image is symmetrical about a given
axis, features of the left and right side of the axis should be in correspondence to
each other. This means that U(k )(m, n) and Uékr)(m, n), the filter responses of
sliced-cone filter of orientation ax; and ag,, should be symmetrical about given
axis at ap, where kl and kr are the indices of angle ay + I’“(z and ap — Ik(z for
i = 1,2,..., K, respectively. In Uy layer, the symmetry measure for axis of
orientation ay, at point (m,n) of image, Ul(f) (m,n), is computed by

Uiy (mn) = ¢ (UG (m,m) + UL (m,m) = UL (m,m) = UL (mom)] )
()
Here, we define v = 1 Z4(at, akr), where Z(ag;, ar.) = | mod (ag — apr +
w/2,m) — /2| denotes relative difference between angle ax; and ag,. And ~y de-
termines the weight for summation of filter output response of the kith and krth
orientations. It is maximized when ay; and ay, are perpendicular to aj, and
minimized (becomes zero) when they are parallel to ay. This is because filter re-
sponses Uékl)(m, n) and Ugm(m, n) that are parallel to the symmetry axis leave
artifacts on the very end of the image which cannot be removed by subtraction
part, of (B]). § determines the weight for second term of (). By subtracting sec-
ond term from first term, U I(LI}C ) (m,n) is left with only common part of two output
responses U( )(m,n) and Ugw) (m,n), which can be interpreted as symmetry

axis. The final symmetry axes detected are Ux (m,n) = max U}}c) (m,n).

= g ==

/
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U[(]k:l) (m,n) U‘(Ikzz) (m,m) UI(Ik:35)(m, n) U[(]k:as)(m' n)

Fig. 2. Symmetry axes detection process. Black lines indicate given symmetry axis
candidates with angles of a; (k = 1,2,...,36). Colored pairs of lines with same colors
indicate pairs of directions of sliced-cone filters with angles of ax; and ag., to test for
the symmetricity of given symmetry axis (black line).
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Oscillatory Network. Among several symmetry axes detected, we alterna-
tively activate one symmetry axis at a time and reconstruct asymmetry parts
with respect to the activated axis. To activate one symmetry axis at a time, we
used locally excitatory globally inhibitory oscillator networks (LEGION) [6] and
mutual excitatory connectivity based on co-linearity between edge pixels.

Let us imagine two edge pixels e; and e; as shown in Fig. Bl We name orien-
tation of edge pixels e; and e;, and line e;e; as 0;, 0;, and 0,5, respectively. The
distance between two edge pixels is denoted as d;;. The angle between each edge
pixel and line e;e; is defined as:

¢ij = D(9Z — Gij),and ¢ji = D(QJ - 0”) (6)

Here, a function D(#) = 6 — | ? + 0.5]7 is a conversion of angle into the range
of [-7,7). Here, |x] is the round down value of x.

Given this situation, we detect straight lines using excitatory connection w;;
and inhibitory connection v;; (), where fq(d;;) and fi(¢ij, ¢;:) denote distance
factor and linearity factor respectively. They are computed as in () and (@),
where b is a constant. The neurons that are close together and appear on a
straight line score high value for excitatory connection w;;.

wij = fa(dij) [i(¢ij, ¢ji), and vij = ginn fa(diz)- (7)
od 2 3
faldij) = (di]) if di; > og, ®)
1 otherwise

cosb (|gij| + |dsil) if b (|| + |#sil) < 3,
0 otherwise

fi(ij, dji) = { 9)

The final excitation of neuron is determined by (I0)). Parameter g;,, controls
the operation of the network, which acts as a threshold of neuron’s excitation.

wij —vij = fa(dij)(fi(Pij, dji) — Ginn)- (10)

Oscillator X (%) (m,n) represents the activity of the symmetry axis with orienta-

tion ay, and position (m,n). It receives U}}c) (m, n) as external input. The network
generates alternate activation of symmetry axes. (See [6] for the details).

2.2 Part 2 - Asymmetry Reconstruction and Correction

The detected symmetry axes are alternatively fed into part 2 one by one, for
asymmetry reconstruction and correction.

Asymmetry Reconstruction. Given one symmetry axis activated, we calcu-
late a measure of asymmetry, or back projection coefficient Bgc ) (m,n), for each

of neurons on the symmetry axis. Bg€ ) (m,n) is defined by

K
BE (mun) = 3" A® (m,n) x o (Ug“ )(m,n) — U >(m,n)) . (1
k'=1
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Fig. 3. Two edge pixels

A®( ) 1 if X®(m,n) >0, (12)
m,n) = ) ,
0 otherwise

where O, is a threshold and k" = mod(2k’ — k —1,K) + 1.

Given the kth symmetry axis, we compare differences in filter responses of
counter angles. This differences is the asymmetry measure, the back projec-
tion coefficient B(C{C ) (m,n). Asymmetric parts for given symmetry axis is re-
constructed by filtering back Bgc ) (m,n) with sliced-cone filters Fgg (m,n). The
process is described in Fig. @ (b), and back projection result Bp(m,n) is shown
in Fig. @ (¢), and is computed as:

K L L
Bp(m,n) = Z Z Z F®m! 'y x BE (m +m/ n+n'). (13)
k=1n'=—Lm'=—L

Asymmetry Correction. We generate mask image M (m, n) with reconstructed
asymmetry part.

M(m,n) < ¢ [M(m,n) + p(Bp(m,n) — max (nBr(m,n),e))]  (14)

where 1) [ is defined by ¢ [a] = max(min(e, 1),0), and Br(m,n) = >, A® (m,n)x
(Fc(m,n))?. As an asymmetric image pixel gets closer to the symmetry axis,
it receives stronger back-projection. We introduced Bj(m,n) to compensate for
the spatial irregularity of back-projection.

The mask image is assigned to U (m,n) by

Ug™™ (m,n) < (1 = M(m,n))Ug"" (m, n). (15)

It removes asymmetries in Ug*"(m,n) and feed the result to layer Uék) (m,n)
in part 1, for recurrent feedback of asymmetry correction and symmetry axes
detection steps.

3 Experimental Results

In this experiment, we used images provided by Fukushima [5] and generated
some corruptions or noises in the images to create asymmetries. The asymmetries



Self-correcting Symmetry Detection Network 565

/ 4 - it

’ ’ 4
(2) (®) (©) (d)

Fig. 4. (a) Asymmetry part with respect to given symmetry axis, (b) back projection of
Bék)(m,n) by sliced-cone filter Fé’g (m,n), (c) reconstructed asymmetries, Bp(m,n),
(d) generated mask, M(m,n)
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Fig.5. Experimental results. (a) Input image corrupted with line and blob, and
Ug'™(m,n), (b) Ux (m,n), (c) symmetry axis activated one at a time by oscillator net-
work, (d) image mask with respect to active symmetry axis, (e) self-corrected image,
(f) accumulation of neural activity in oscillator network, (g) symmetry axes detected
by Fukushima’s network [5].

include lines and blobs. Examples of corrupted images and its UZ“™(m, n) are
shown in Fig. [l (a). The size of each image is 76 x 76. We used the length of filter
L = 50, and number of orientational angle K = 36. For calculation of U(k) (m,n)
in Eq. (@), we used y1 = 16, and § = 5. For mask generation in Eq. (]]ZI) we
used p = 0.003, n = 0.6, and € = 1.0. For fast simulation of oscillatory network,
we implemented simplified algorithm of LEGION in [6].

The results of asymmetry corrections and resulting symmetry axes detection
are shown in Fig. Bl To verify the effect of asymmety correction in symmetry
axes detection, we compared our result with that of Fukushima’s. As shown in
Fig. Bl (g), Fukushima’s network displays weak activations or sometimes miss
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symmety axes with asymmetric parts. On the other hand, the proposed network
successfully corrects asymmetries with mask generated by back-projection (Fig.
(d)). Also, our network returns self-corrected image with perfect symmetries
(Fig. Bl (e)) and clear symmetry axes (Fig. [l (f)).

4 Concluding Remarks

This paper proposed the self-correcting symmetry detection network. Several
technical contributions were added to conventional ANN-based symmetry de-
tection model for self-reconstruction of image symmetry. The oscillator network
in the output layer serializes the extraction of symmetry axes, which enable se-
quential reconstruction of multiple image symmetries. The back-projection of
directional blurring filter plays a significant role in estimating differences from
the input image and correcting asymmetries. As shown in experimental results,
our network can handle partial occlusion and local distraction by self-correction.
It overcomes the limitation of conventional symmetry detection network mod-
els that suffer from asymmetry corruption. The network could be extended for
practical applications in real environment. As further works, we will test the
performance of our network with various types of asymmetry noise.
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