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Abstract. In this paper, an adaptive blind dereverberation method
based on speech generative model is presented. Our ICA-based speech
generative model can decompose speeches into independent sources. Ex-
perimental results show that the proposed blind dereverberation model
successfully performs even in non-minimum phase channels.

1 Introduction

In real room environments, sounds are corrupted with delayed versions of them-
selves reflected from walls. This room reverberation severely degrades intelligi-
bility of speeches and performance of automatic speech recognition system [1].
In some applications, it is necessary to recover an unknown source signal using
only observed signal through an unknown convolutive channel. This problem is
called the blind deconvolution and also known as the blind dereverberation when
convolving channels are room impulse responses. Almost every methods for the
blind deconvolution are developed under the assumption that a source signal is
independent identically distributed (IID) and non-Gaussian [2–8]. When an IID
non-Gaussian source signal is convolved with a multi-path channel, the prob-
ability density function (p.d.f.) of the received signal approaches to Gaussian
due to the central limit theorem. Deconvolution can then be accomplished by
adapting a deconvolution filter which makes the p.d.f. of deconvolved signal away
from Gaussian [2–4]. When sources are not IID such as speeches, the existing
algorithms cannot be directly applied.

In this paper, we make a generative model of speeches, which linearly de-
compose them into independent components. In the first stage of our model, we
extract independence transform matrix using independent component analysis
(ICA) of natural human speech signals. Using the independence transformation
of speeches, we derive blind dereverberation learning rules based on the Least
Square (LS) method [6, 7].
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2 ICA-based speech generative model

We adopt ICA algorithms to find efficient representations of speech signals such
that their sample by sample redundancy is reduced significantly. This redun-
dancy reduction leads nonstationary correlated speech signals to IID-like signals.

ICA assumes a source vector s whose components si(i = 1, · · · , N) are mu-
tually independent. We can only observe linear combinations

x = AIs (1)

where AI is an N × N mixing matrix and their columns are called as basis
vectors. After ICA adaptation which minimizes the mutual information among
unknown sources [3, 5], estimated sources will be as independent as possible. If
the observation vector is a frame of speech, we can find an independent signal
vector and related basis vectors. Here we will call WI = A

−1

I
as the “indepen-

dence transform matrix”.
To learn WI from natural human speech signals, we used 10 sentences from

one speaker (mcpm0), which corresponds to DR1 New England dialect of the
train set in the TIMIT continuous speech corpus. 8kHz sampling was used to
reduce computation time. We assumed 16 basis vectors for the ICA-based speech
generative model and each speech frame were composed of 16 samples, i.e. 2ms
time interval. Figure 1 shows a diagram of the speech generative model. A part of
mcpm0’s sentence, ‘she had your dark suit’, can be generated with independent
sources through trained 16 basis vectors.

Fig. 1. Diagram of speech generative model with 16 trained basis vectors.

To check the independence transform property of WI , joint p.d.f. of two
adjacent samples was estimated. Figure 2 (a) shows the contour-plots of joint
p.d.f. of two adjacent samples for the mcpm0’s sentences. Although adjacent
samples in natural human speech signals are highly correlated, their dependen-
cies are very much reduced when the independence transform matrix is applied
as shown in Fig.2 (b).
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Fig. 2. Contour-plots of joint p.d.f. for mcpm0’s sentences. (a) two adjacent samples
in original unprocessed speech signal, (b) 1st and 2nd components transformed with
WI .

3 Learning rule for nonminimum-phase channels

Now, we derive the algorithm for non-minimum phase channel based on the LS
measure [6, 7]. In the dereverberation block of Fig.3, let’s define Û

F ≡ Wfft û,
X

F ≡ Wfft x, and W
F ≡ Wfft w, where Wfft denotes discrete Fourier trans-

form matrix and the superscript F means frequency domain representation. Now
the dereverberated speech signal û can be expressed in the frequency domain as,

Û
F = W

F ⊗ X
F , (2)

where ⊗ means component by component multiplication. IID-like signal u can
be expressed in the frequency domain as,

U
F = Wfft u = WfftWI û

= WfftWIW
−1

fft
(WF ⊗ X

F ) = W
F

α Û
F , (3)

where W
F
α ≡ WfftWIW

−1

fft
.

The LS cost function in the frequency domain corresponds to

JLS ≡
∑

all fft points

|UF − fft{g(u)}|2 =
∑

all fft point i

|ei|
2 (4)

where g(·) is the Fisher score function [5] and ei is the i-th component of (UF −
fft{g(u)}). We can obtain the update rule by minimizing JLS with respect to
W

F . That is, in matrix formulation,

∂JLS

∂WF ∗
= {WF H

α (UF − fft{g(u})} ⊗ X
F ∗ (5)

where superscript H denotes the Hermitian operator and ∗ is the complex con-
jugate. Finally, using the relative gradient ([8]),

∆W
F ∝ −

∂JLS

∂WF ∗
⊗ W

F ∗ ⊗ W
F

= −{WF H

α (UF − fft{g(u)})} ⊗ Û
F ∗ ⊗ W

F . (6)



4

Fig. 3. Proposed blind dereverberation method with speech generative model.

4 Experimental results

We conducted blind dereverberation experiments using simulated room impulse
response. During this deconvolution phase the independence transform matrix
is fixed to the previously-trained values. To get the simulated room impulse re-
sponse we used the commercial software ‘Room Impulse Response v2.5’ which
assumes a rectangular enclosure with a source-to-receiver impulse response cal-
culated using a time-domain image expansion method [9].

We assumed that the room dimensions are 4 m × 5 m × 3 m, a sound speed
of 345 m/s, and reflection coefficients for 4 walls are 0.9, ceiling and floor are
0.7. Volume of the room is 60 m3, and the reverberation time is 0.56 s.

Three different reverberant channels regarding the position of the source and
receiver were used for experiments. The position of the source was fixed at (2
m, 2 m, 1 m), and the positions of three receivers were at (2 m, 1.7 m, 1 m), (2
m, 1.5 m, 1 m) and (2 m, 1 m, 1 m). The length of room impulse response was
truncated by 512 samples. Fig.4 shows obtained three different room impulse
responses. Channel distortions are much heavier as the distances are increased.
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Fig. 4. Three different simulated room impulse responses. The distances between the
source and receiver are (a) 0.3 m (channel 1), (b) 0.5 m (channel 2) and (c) 1 m

(channel 3).
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Equation (6) was used to update inverse filter W in Fig.3. 1024-tap delayed
causal FIR (finite impulse response) filter was used for the inverse filter, and
the delay was 512 samples. Ten sentences of mcpm0’s speaker were used for
blind dereverberation. Signal-to-reverberant component ratio (SRR) and inverse
of inter-symbol interference (IISI) were used as performance measure. SRR is
defined as:

SRR (dB) = 10 log

( ∑

n
ŝ2

n
∑

n
(ŝn − ûn)2

)

(7)

where ŝ is unknown clean speech signal and û is dereverberated signal. IISI is a
measure of how close the dereverberated impulse response to the delta function.
IISI is defined as:

IISI (dB) = 10 log

(∑

k
|tk|

2 − maxk|tk|
2

maxk |tk|2

)

(8)

where t is the convolution of the reverberant channel and the estimated inverse
filter of the channel. Higher SRR and IISI show better result.

Figure 5 show the learning curves for the channels. Dashed and solid lines
show the resulting IISI and SRR values respectively. Totally 7000 sweeps were
performed, and training converged at about 1000 sweeps.
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Fig. 5. Learning curves of IISI (dashed line) and SRR (solid line).

IISI and SRR values at the initial stage and the convergence are shown in
Table 1. Final value means the average value at the convergence, and incre-
ment means the difference between the final value and the initial value. Perfor-
mances are very much increased even though the room impulse responses are
non-minimum phase and show about 15 ∼17 (dB) improvement in IISI and 20
∼ 27 (dB) improvement in SRR.

To verify the speech quality before and after dereverberation, and predict
the performance improvement in the automatic speech recognition system we
compared the spectrograms. Spectrogram of reverberated speeches is blurred
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Table 1. IISI and SRR values at the initial stage and the convergence.

IISI (dB) SRR (dB)
Initial Final Increment Initial Final Increment

Channel 1 -4.1 13.0 17.1 -7.0 20.0 27.0

Channel 2 -4.6 12.8 17.4 -7.3 20.0 27.3

Channel 3 -6.8 8.5 15.3 -9.9 9.6 19.5

by the room impulse response especially in the mid and high frequency ranges.
Those corrupted frequency structure could be recovered after dereverberation
process and we can expect that speech recognition rate would be improved.

5 Conclusion

In this paper, a method for blind dereverberation based on speech generative
model was proposed and LS-based learning rule was derived. Proposed blind
dereverberation method was successfully applied to the simulated room impulse
responses even though it is non-minimum phase and shows around 20 (dB)
improvement in SRR and IISI.
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