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Abstract. In performing blind deconvolution to remove reverberation
from speech signal, most acoustic deconvolution filters need a great many
number of taps, and acoustic environments are often time-varying. There-
fore, deconvolution filter coefficients should find their desired values with
limited data, but conventional methods need lots of data to converge the
coefficients. In this paper, we use sparse priors on the acoustic decon-
volution filters to speed up the convergence and obtain better perfor-
mance. In order to derive a learning algorithm which includes priors on
the deconvolution filters, we discuss that a deconvolution algorithm can
be obtained by the joint probability density of observed signal and the
algorithm includes prior information through the posterior probability
density. Simulation results show that sparseness on the acoustic decon-
volution filters can be successfully used for adaptation of the filters by
improving convergence and performance.

1 Introduction

Blind deconvolution has become an important topic for research and develop-
ment in digital signal processing because it has high potential for broad ap-
plications in speech enhancement as well as communications. Especially, blind
deconvolution in acoustic environments is a very challenging problem because
natural acoustic signals are time-correlated and deconvolution for acoustic envi-
ronments are very complex.

For example, let us consider the teleconferencing problem, in which people
talk into a microphone located not at their mouth as in usual telephone conver-
sation, but located some distance away. The speech is reverberated and can have
interference among phonemes. In that case, the speech intelligibility is degraded.
We can model the situation as a single-input-single-output (SISO) discrete-time
linear system, in which the relationship between the input and the output signal
is given by

Lyp—1
z(n) = Z h(k)s(n — k) + v(n). (1)
k=0
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The goal of blind deconvolution is to recover the input signal s(n) from the
output z(n) when the channel h(k) is unknown. Typically, the noise sequence
v(n) is modeled by a zero-mean white Gaussian noise process.

Many researchers have studied on the problem and proposed a number of blind
deconvolution algorithms [I[2]. In most of the blind deconvolution methods, a
causal finite-impulse-response (FIR) filter as a linear deconvolutive system is
used to recover the input signal s(n). Hence, the deconvolutive model can be

formulated by
Lo—1

u(n) = > wk)z(n — k), (2)

k=0

where w(k) is a filter coefficient of the deconvolution filter. The overall system
is shown in Fig. [l Since the blind deconvolution methods do not have a train-
ing sequence, adaptation of w(k) usually makes use of some a priori statistical
knowledge of the recovered output signal u(n).

/
s(n) ——~  h(k) @x(") wk) | u(n)

vin)

Fig. 1. Overall system for convolution and deconvolution

Among various signals, speech is so time-correlated and non-stationary that
many algorithms do not work well to deconvolve it. In order to derive a robust
algorithm, entropy might be a good candidate [3]. By forming the cost function
as negative entropy of the output probability density function (pdf) p(u) and
minimizing the cost using its gradient with respect to coefficients of the decon-
volution filter, the learning rule can be obtained in the frequency domain as

AW oc (1/W* — fit{g(u) L X)W, 3)

where W and X are the discrete Fourier transform of the deconvolution filter
and the observed signal x(n), respectively [3]. For the nonlinear function g(u),
we can use —p'(u)/p(u).

Although some prior knowledge on the distribution of the recovered output
signal is used to adapt the deconvolution filter as we mentioned in the previous
paragraph, we do not usually have any assumption on the deconvolution filter
w(k). From a point of view, this is advantageous because the learning permits
that the filter may have any kind of types. In some application fields, however,
we can obtain some knowledge on the deconvolution filter or assume statistics
on the filter. In those cases, the filter may be estimated more exactly or easily if
we make use of the knowledge or statistics. Especially, when the deconvolution
filter is too complex or the number of observed data is too limited to adapt the
filter, prior information on the deconvolution filter can play an important role.
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Even though assumption on a form of the mixing matrix in independent com-
ponent analysis gives successful estimation of the image features [4], most of the
image feature extraction problems do not suffer from lack of data by obtaining
sufficient number of image patches. Thus, the assumption hardly affect the re-
sults as critical information. In this paper, we try to set priors on acoustic decon-
volution filters for blind deconvolution of speech signals. It is known that most
of the acoustic deconvolution filters require lots of taps. In addition, acoustic
environments are often time-varying, and deconvolution algorithm should adapt
the deconvolution filter in a short time period (i.e., with limited number of data).
Therefore, prior information on the deconvolution filter is likely to give better
estimates of the filter. The deconvolution filters actually estimate the inverse
of acoustic reverberation, and the filters require very different numbers of taps
according to the acoustic reverberation. In order to deconvolve various types
of acoustic reverberation, we need to use a sufficient number of taps for the
deconvolution filter, and a large number of taps are almost zero in most cases.
Therefore, we can impose sparse priors on the acoustic deconvolution filters, and
the plausible priors help us estimate more exact filters.

2 Another Derivation on the Blind Deconvolution
Algorithm

For simple derivation, the deconvolutive model, Eq. []), can be represented in

the form using time-delay operator z~ ' as

u(n) = W(z)z(n), (4)
where
Lo—1
W(z)= > wk)z"". (5)
k=0

In order to derive the blind deconvolution algorithm, Eq. @), let us consider
the input and the output signal of the deconvolutive model over a N sample
block, defined by the following vectors:

[Z(O), x(l)v ) x(Ni]-)}Ta
[w(0), u(1), -, w(N —1)]". (6)

X
u

Both the input and the output signal, z(n) and u(n) are zeros for n < 0.
Then, we can write the output signal vector u as
w(0) 0 - 0
e w(zl) w(:O) . 0 Ny @
W(N = 1) w(N —2) - - w(0)

Here, w(Lg+1) = w(Lg+2) = --- = w(N — 1) = 0 by assuming that the length
of the channel L, is much smaller than N.
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The joint probability density of the observed signal vector x can be given by
p(x|W(2)) = [w(0)" |p(w), (®)

and p(u) = p" (u(n)) for an i.i.d. signal. Therefore, the log-likelihood of Eq. (§) is
L(W(2)) = Nlog w(0)| + N logp(u(n). (9)

By maximizing the log-likelihood with respect to w(k), the natural gradient
algorithm [BL[6] for updating w(k) is given by

Aw(k) o< w(k) — ¢(u(n))rx(n), (10)
where p(u(n)) denotes the score function given by —p’(u(n))/p(u(n)), and

L,—1

re(n) = > wlu(n —k+1). (11)

=0

The algorithm has the almost same form as in [7].

As an efficient way to implement the algorithm, a frequency-domain process-
ing using the short-time Fourier transform for sample blocks can be considered.
The resulting algorithm is the same as Eq. ().

3 Imposing Sparse Priors on the Deconvolution Filters

In order to make use of priors on the deconvolution filters during adaptation of
the filter coefficients, let us reconsider the joint probability density of the ob-
served signal vector, p(x|W (z)). In addition, we assume that the joint probability
density of the deconvolution filter p(W (z)) is known as prior information. In that
case, the logarithm of the posterior probability density can be expressed as

log p(W (2)[x) = log p(x|W (2)) + log p(W(2)) — log p(x). (12)

Maximizing log p(W (z)|x) with respect to W (z) provides a learning algorithm for
adapting W (z) with priors on the deconvolution filter. Since the third term of the
right side in Eq. (I2)) does not depend on the deconvolution filter, it does not affect
the learning algorithm. Note that the first term is the same as the log-likelihood of
Eq. @. Therefore, Eq. [@B]) can be used for updating W(z). Adding to Eq. @), we
have to maximize the second term log p(W (z)) with respect to W (z) as

dlogp(W(z)) _ dz(v‘;/v((zz)))
W) pW() (13)

As we mentioned in Section [Il a sufficient number of taps are used for the
deconvolution filter, and a large number of taps are almost zero in most cases.
Therefore, sparseness can be imposed on the acoustic deconvolution filters. As
a simple and general pdf for sparse distribution, Laplacian distribution can be
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considered. For simple formulation, we also assume that coefficients of the de-
convolution filter are i.i.d. Thus, equation for updating w(k) from the second

term in Eq. ([I2)) is

dlogp(W(z)) _ dLqglogp(w(k))
dw(k) N dw(k)

ox —sgn(w(k)).

Aw(k) x (14)

In maximizing the posterior probability density, we obtained two equations for
learning the deconvolution filter. One of them is processed in the frequency do-
main whereas the other is performed in the time domain. In real implementation
even without prior information on the deconvolution filter, the inverse Fourier
transform of the filter should be computed whenever the filter is adapted in the
frequency domain. This is because one has to take the part corresponding to
length of the deconvolution filter and pad zeros to the remaining part of the
block. Therefore, we can easily apply Eq. (IH)) after the deconvolution filter in
the time domain is computed.

Overall procedure for updating the deconvolution filter is as follows:

— Begin
Transform the deconvolution filter into the frequency domain.
Make a sample block.
Transform the block into the frequency domain.
Update the deconvolution filter using Eq. (B]).
Transform the deconvolution filter into the time domain.
Update the filter using Eq. (I3)) and set the outside of the deconvolution
filter to zero.
7. Go to step 1.
— End

O Gt WD

4 Experimental Results

We have performed experiments on blind deconvolution to show the effect of
sparse priors on the deconvolution filters. Experimental results were compared
in terms of the intersymbol interference (ISI) [3,[8], which is computed by

Yok [t(R)[? — max t(k)l2>

ISI(dB) = 10log ( o {8

(15)
where t(k) = w(k) = h(k).

As input data to the SISO linear system of Eq. (), some speech files from
a male speaker were selected in the TIMIT database [9]. The total signal had
about 27 second length, and the sampling rate was converted into 8kHz. It is
known that speech signal approximately follows Laplacian distribution. There-
fore, sgn(-) was used as ¢g(-) in Eq. (@)). In addition, note that speech signal is
not i.i.d. When one performs blind deconvolution with speech signal, the decon-
volution filter learns from the signal in order to remove not only reverberation
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in acoustic environments but also correlation or dependence of the speech sig-
nal. To avoid the side-effect that deconvolution algorithm removes dependence
of speech, a pre-whitening filter has been learned from speech and then used for
whitening the signal which was reverberated by a convolutive channel.

The convolutive channel to generate the output signal (n) of the SISO linear
system of Eq. ({l) was a 32 tap non-minimum phase filter as shown in Fig.[2l The
channel was a part of the impulse response measured in a normal office room.
In order to deconvolve the channel, we have employed a 512 tap filter for w(k)
with tap-centering initialization. The block size was 1024 to apply the fast Fourier
transform. As shown in the SISO linear system, the observed signal z(n) is gener-
ally corrupted by noise which may come from various noise sources. In this paper,
additive white Gaussian noise was used to corrupt the observed signal.

Fig. B displays the ISI for the deconvolution algorithm with sparse priors on
the deconvolution filter. In this experiment, the signal-to-noise ratio (SNR) of
the observed signal was 15dB. For comparison, the simulation on the algorithm
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Fig. 2. A 32 tap non-minimum phase convolutive channel
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Fig. 3. The ISI for the deconvolution algorithm with the signal whose SNR is 15dB
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Fig. 4. The ISI for the deconvolution algorithm with the signal whose SNR is 20dB

without sparse priors has been performed with the same parameters, and the
result was included. Although additional computation requirement to impose
sparse priors was negligible, the deconvolution algorithm with sparse priors on
the filter showed faster convergence and better performance than that without
the priors. The result indicated that the deconvolution algorithm could not con-
verge to a desired solution without sparse priors and the priors on the filter
provided useful information to learn it.

In order to consider the effect of noise, we repeated the simulation for the
signal whose SNR was 20dB, and Fig. ll shows the result. The difference between
the ISIs for the deconvolution algorithm with and without the priors was smaller
than that in the previous experiment. In this simulation, the observed signal
was contaminated with less noise. Even without resort to the priors, hence, the
deconvolution algorithm could easily adapt the filter by using the observed data
which contained more clear information on the convolutive channel. However,
note that convolutive channels in real-world situation are not fixed as in this
experiment but time-varying and the noise comes from very various sources
such as measurement error and distributed noise.

Strengthening sparse priors excessively by increasing the step-size of Eq. (IH)
might accelerate the convergence speed in the early stage but disturb the fre-
quency domain update algorithm of Eq. (Bl). Therefore, the convergence speed
might slow down. In order to avoid the disturbance, we need to choose a moder-
ate step-size, and using time-decaying step-sizes can be an appropriate strategy
to give fast convergence in the beginning part and not to disturb the frequency
domain update algorithm in the ending part.

5 Conclusion

In this paper, we imposed sparse priors on acoustic deconvolution filters for blind
deconvolution to remove reverberation from speech signal. In order to include
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the sparse priors in the deconvolution algorithm, we maximized the posterior
probability density of convolved signal with respect to the filters. The resulting
algorithm needed negligible additional computation. Simulations indicated that
sparseness imposed on the filters could provide useful information to accelerate
convergence speed of the filters and provide better performance comparing with
completely blind prior information.
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