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Abstract. In performing blind equalization, we propose a direct channel
estimation method based on entropy-maximization of input signal with
its known probability density function. That is, the proposed method
estimates filter coefficients of the channel instead of equalizing filter co-
efficients which most of equalization methods try to estimate. Because
the channel usually has a much shorter length than the equalizing fil-
ter, this method requires much smaller parameters to be estimated, and
the channel can be equalized with much less computational demands. In
addition, simulation results show that the proposed method can recover
signals with a much smaller error than conventional methods.

1 Introduction

Blind equalization has become an important research problem in digital signal
processing because of its desirable features and the challenge it poses to re-
searchers in the field. If a training sequence is available, an adaptive equalizer
can be easily adapted using the standard least-mean-squares (LMS) algorithm.
However, there are many cases such as high data rate, bandlimited digital com-
munication systems where the transmission of a training sequence is impractical
or very costly. Therefore, blind adaptive equalization algorithms that do not rely
on training signals need to be developed.

Let us consider a single-input-single-output (SISO) discrete-time linear sys-
tem, in which the relationship between the input and the output signal is given
by

x(n) =
Lm−1∑

k=0

h(k)s(n− k) + v(n). (1)

The goal of blind equalization is to recover the input signal s(n) from the output
x(n) without the assistance of a training sequence when the channel h(k) is



unknown. Typically, the input signal s(n) is i.i.d., and the noise sequence v(n)
is modeled by a zero-mean white Gaussian noise process.

Many researchers have studied on the problem and proposed a number of
blind equalization algorithms [1, 2]. In most of blind equalization methods, a
causal finite-impulse-response (FIR) filter as a linear equalizer is used to recover
the input signal s(n). Hence, the equalizer model can be formulated by

u(n) =
La−1∑

k=0

w(k)x(n− k), (2)

where w(k) is a filter coefficient of the equalizer. Since the blind equalization
methods does not have a training sequence, adaptation of w(k) usually makes
use of some a priori statistical knowledge of the input signal s(n).

In situations where the amplitude characteristics of s(n) are roughly known,
the class of Godard algorithms can be used [3]. Among the Godard algorithms,
especially, the Sato algorithm and the constant modulus algorithm are very pop-
ular because of its simplicity [2]. If the probability density function of s(n) is
approximately known, an entropy-maximization algorithm for blind equalization
can be derived by exploiting the higher order statistics (HOS) implicitly. It pro-
vides the same algorithm as the maximum likelihood estimation gives. Moreover,
the signal is equalized with an improved convergence speed by applying the natu-
ral gradient to the blind equalization algorithm [4–6]. The entropy-maximization
algorithm with the natural gradient is as follows [4]:

∆w(k) ∝ w(k)− ϕ(u(n− La + 1))r(n− k), (3)

where

r(n) =
La−1∑

l=0

w(La − 1− l)u(n− l). (4)

However, the equalizer requires a much longer filter length than the channel
h(k) since the equalizing filter approximates the inverse of the channel. There-
fore, the number of estimated parameters is also very large, and it requires
somewhat heavy computational loads to update filter coefficients of the equal-
izer. In addition, a large number of parameters degrade the recovered signal after
convergence.

In this paper, we propose an equalizing method based on estimating a channel
directly instead of the equalizing filter. This method requires much smaller pa-
rameters to be estimated. Therefore, we can equalize the channel with much less
computational complexity and provide the recovered signal with a much smaller
error than the conventional equalizing methods which estimate the inverse of the
channel.

2 The Proposed Blind Equalization Algorithm

For simple derivation, the SISO linear system (1) can be represented in z-domain
as

x(n) = H(z)s(n), (5)



where

H(z) =
Lm−1∑

k=0

h(k)z−k. (6)

In order to derive a new blind equalization algorithm, let us consider the
input and the output signal of (5) over a N sample block, defined by the following
vectors:

S = [s(0), s(1), · · · , s(N − 1)]T ,

X = [x(0), x(1), · · · , x(N − 1)]T . (7)

Both the input and the output signal, s(n) and x(n) are zeros for n < 0.
Then, we can write the output signal vector X as

X =




h(0) 0 · · · 0
h(1) h(0) · · · 0

...
...

. . .
...

h(N − 1) h(N − 2) · · · h(0)


 S. (8)

Here, h(Lm +1) = h(Lm +2) = · · · = h(N − 1) = 0 by assuming that the length
of the channel, Lm is much smaller than N .

The joint probability density of the output signal vector X can be given by

p(X) =
p(S)
|h(0)N | , (9)

and p(S) = pN (s(n)) for an i.i.d. input signal. Therefore, the log-likelihood of
(9) is

L(H(z)) = −N log |h(0)|+ N log p(s(n)). (10)

An infinitesimal increment of the log-likelihood for an increment dH(z) is

dL(H(z)) = L(H(z) + dH(z))− L(H(z)). (11)

With the score function defined by

ϕ(s(n)) = − d

ds(n)
log p(s(n)), (12)

we have
d log p(s(n)) = −ϕ(s(n))ds(n), (13)

where ds(n) is given in terms of dH(z) as

ds(n) = −H−1(z)dH(z)s(n). (14)

Define a modified differential dM(z) as

dM(z) =
∞∑

k=−∞
dm(k)z−k = H−1(z)dH(z). (15)



Therefore,
d log p(s(n)) = ϕ(s(n))dM(z)s(n). (16)

In the similar way, we can show that

d log |h(0)| = dm(0). (17)

Thus, substituting (16) and (17) into (10) and (11) gives

dL(H(z)) = −Ndm(0) + Nϕ(s(n))dM(z)s(n). (18)

Maximizing the log-likelihood in terms of dM(z) provides the following learning
algorithm,

∆M(z) ∝ dL(H(z))
dM(z)

. (19)

Using (15), the natural gradient algorithm for updating h(k) is given by

∆h(k) ∝ H(z)
dL(H(z))

dm(k)
∝ −H(z)δ(k) + H(z)ϕ(s(n))s(n− k)
= −h(k) + ϕ(s(n))qk(n), (20)

where

qk(n) =
Lm−1∑

l=0

h(l)s(n− k + l). (21)

Note that the update of h(k) depends on future values s(n−k + l), k− l < 0.
In addition, it involves very intensive computation to compute all qk(n), k =
0, · · · , Lm − 1, at each time step. Practically, the algorithm is modified by
introducing an Lm−1 sample delay to remove the non-causal terms and reusing
past results assuming that h(k) is not much changed over about 2Lm − 1 time
steps and qk(n) ≈ q0(n−k). Moreover, it is necessary to deal with complex-valued
data for communication applications. With these considerations, the algorithm
is modified as

∆h(k) ∝ −h(k) + ϕ(s(n− Lm + 1))q∗(n− k), (22)

where

q(n) =
Lm−1∑

l=0

h∗(Lm − 1− l)s(n− l). (23)

Taking the additive white Gaussian noise into consideration, the recovered
signal follows the Pearson mixture model which is a mixture of the normal
distributions [5, 7]. Therefore, s(n)−tanh(s(n)) can be used for the score function
ϕ(s(n)). To deal with complex-valued data in communication systems, the score
function becomes

ϕ(s(n)) = <{s(n)} − tanh(<{s(n)}) + j [={s(n)} − tanh(={s(n)})] (24)



since one can consider that the real part of the signal s(n) is independent of the
imaginary part.

After estimating the channel h(k) with the proposed method, we can recover
the input signal s(n) as

ŝ(n) =
La−1∑

k=0

ĥ−1(k)x(n− k), (25)

where ŝ(n) and ĥ(k) denote estimations for s(n) and h(k), respectively. In order
to compute ĥ−1(k), one can use lots of methods including [8]. In this paper, we
adopt a method which makes use of reciprocal values of the results from the
Fourier transform because of its simplicity.

3 Computational Complexity

In order to compare the computational loads of the proposed method and the
conventional entropy-maximization method (3), let us consider the number of
multiplications for complex-valued data. Assuming that the equalizing filter w(n)
has La taps, the conventional method requires approximately 4La multiplications
for a sample. (Note that computational demands on the score function are negli-
gible.) On the other hand, let us assume that the proposed method has Lm taps
for the estimated channel ĥ(n) and La taps for its inverse ĥ−1(n). In this case,
the number of multiplications is approximately 3Lm + 2La + La log2 La using
the fast Fourier transform.

When one performs adaptive learning, accumulating the update amounts
over a sample block and updating the accumulation may often provide more
stable convergence than ‘one-by-one’ updating. With the block updating, the
conventional method requires about 3La multiplications for a sample whereas
about La multiplications are required for a block. For the proposed method, the
loads to compute ĥ−1(n), at most La + La log2 La multiplications, are imposed
for each block. Therefore, about 2Lm + La multiplications are required for a
sample while the number of multiplications for a block is approximately Lm +
La + La log2 La. Because a block usually contains a great many samples, the
approximate ratio of the number of multiplications for the two methods, R is

R =
2Lm + La

3La
. (26)

It is worthy of note that La is much larger than Lm since a typical FIR filter
usually requires much larger taps for an approximated inverse filter. Therefore,
the computational complexity can be considerably reduced by the proposed al-
gorithm.

4 Simulation Results

We illustrate the performance of the proposed blind equalization algorithm via
simulations. We have tested the algorithm with quadrature-amplitude-modulated



(QAM) signals whose amplitudes are
√

2. Experimental results were compared
in terms of the intersymbol interference (ISI). It can be computed as

ISI(dB) = 10 log
(∑

k |t(k)|2 −maxk |t(k)|2
maxk |t(k)|2

)
, (27)

where t(k) = ĥ−1(k) ∗ h(k) or t(k) = w(k) ∗ h(k). We have chosen the length of
ĥ−1(k) to be the same as the length of w(k).

The output signal x(n) of the SISO linear system (1) was generated using
an 8 tap non-minimum phase channel shown in Fig. 1 [9]. In order to equalize
the channel, we have employed a 17 tap filter for ĥ(n) with tap-centering ini-
tialization. ĥ−1(n) has been computed for 64 taps. The step size was 0.001 with
100 samples for a block. Fig. 2 shows the ISI for the proposed method without
noise. For comparison, the simulation on the conventional method (3) has been
performed, and the result was included. In this simulation, a 64 tap filter was
used as the equalizing filter w(n), and other parameters had the same values as
in the proposed method. In addition, we also compared it with the well-known
method proposed in [10]. In order to consider the effect of noise, we repeated
the simulations for the corrupted signals, and Fig. 3 shows the result for the
signal whose SNR was 10dB. From these figures, it can be easily seen that the
proposed method has a much smaller error than the conventional methods.
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Fig. 1. A minimum phase channel.

5 Conclusions and Further Works

In this paper, we proposed a blind equalization method using direct channel esti-
mation. Under the assumption that the probability density function of the input
signal is known, we derived the channel estimation algorithm by maximizing the
entropy of the signal. By estimating filter coefficients of the channel directly,
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Fig. 2. ISI of the recovered signal without noise
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Fig. 3. ISI of the recovered signal with noise (10dB)



the method has much smaller parameters to be estimated than the conventional
method which estimates the equalizing filters. Therefore, the proposed method
can equalize the channel with much less computational complexity. Moreover,
the simulations indicated that a much smaller error was contained in the recov-
ered signal with the proposed method than the conventional method. As some
further works, now we try to apply the method to other applications and extend
it to multi-channel deconvolution.
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