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ABSTRACT

This paper proposes a modified error
function to improve the error back-
propagation (EBP) algorithm for multi-Layer
perceptrons (MLPs) which suffers from slow
learning speed. It can also suppress over-
specialization for training patterns that
occurs in an algorithm based on a cross-
entropy cost function which markedly
reduces learning time. In the similar way
as the cross-entropy function, our new
function accelerates the learning speed of
the EBP algorithm by allowing the output
node of the MLP to generate a strong error
signal when the output node is far from the
desired value. Moreover, it prevents the
overspecialization of learning for training
patterns by letting the output node, whose
value is close to the desired value, generate
a weak error signal. In a simulation study
to classify handwritten digits in the CEDAR
[1] database, the proposed method attained
100% correct classification for the training
patterns after only 50 sweeps of learning,
while the original EBP attained only 98.8%
after 500 sweeps. Also, our method shows
mean-squared error of 0.627 for the test
patterns, which is superior to the error
0.667 in the cross-entropy method. These
results demonstrate that our new method
excels others in learning speed as well as
in generalization.
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I. INTRODUCTION

The error back-propagation (EBP) algo-

rithm [2] is widely used to train multi-layer

perceptrons (MLPs) applied to many pattern

classification problems. Training of MLPs

is usually done by iterative updating of the

weights to minimize the mean-squared error

(m.s.e.) function. To update the weights of the

output layer, one uses the error signal which

is the difference between the desired and ac-

tual output values of MLP multiplied by the

slope of the sigmoid activation function. The

weights of the lower layer are updated based

on the error signal back-propagated through

the weights of the output or preceding layer.

However, the EBP algorithm has a drawback

of slow learning speed. During the learning

process, the MLP goes through stages in which

the reduction of the m.s.e. can be extremely

slow [3], [4]. These periods of stagnation can

influence learning times.

In pattern recognition applications, the de-

sired output value of MLP is one of the two sat-

urated values of the sigmoid function. When

the weighted sum to any output node is in the

saturation region which is opposite to the de-

sired value, we say that the node is “incorrectly

saturated.”

Recently, there have been reports that the

incorrect saturation of output nodes can cause

the stagnation period [4]-[8]. When an out-

put node is incorrectly saturated, the amount

of weight change is small due to the small gra-

dient of the sigmoid activation function, and

the error remains nearly unchanged. In or-

der to resolve this problem, Rezgui and Te-

pedelenlioglu attempted to adjust the slope of

sigmoid activation function [6]. Also, Ooyen

et al. proposed a cross-entropy error func-

tion in which the error signal associated with

the output layer is proportional to the differ-

ence between the desired and actual output val-

ues [7]-[9]. However, we find that the sim-

ulation results of [8] still show the stagna-

tion periods due to the saturation in the hid-

den layer. Furthermore, in our simulations, the

cross-entropy method suffers from the over-

specialization for training patterns since the er-

ror signal is too strong at the final stage of

learning. Besides the cross-entropy error func-

tion, many other error functions were proposed

to improve the generalization performance of

MLPs [10]-[14]. However, none of these func-

tions resolved the incorrect saturation problem

of output nodes. The probability of the in-

correct saturation of output nodes in the first

sweep of learning shows that initialization of

MLP with small random weights can avoid the

stagnation period due to the saturation in the

output layer as well as in the hidden layer [4].

Even in this case, the possibility of incorrect

saturation still exists during the learning pro-

cess.

In this paper, we address the problems of

learning and generalization. Since the final

goal of pattern recognition is to achieve good

generalization capability, the learning should

not be specialized too much for the training

patterns. At the same time, the learning should

be fast for practical implementation of pattern

recognition systems. For this reason, we pro-
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pose an improved EBP algorithm for MLPs by

allowing the output nodes of the MLP to gen-

erate an appropriate error signal according to

the situation of output nodes. When some out-

put nodes of MLP are incorrectly saturated, the

strong error signal of the output nodes updates

the associated weights so that they can escape

the incorrectly saturated state. This can ac-

celerate the learning speed. For the correctly

saturated output nodes, the weak error signal

prevents the overspecialization of learning for

training patterns. In Section II, we propose a

modified error function for the EBP algorithm.

In Section III, we show the effectiveness of

the modified error function through the sim-

ulation of handwritten digit recognition using

the CEDAR [1] database, and Section IV con-

cludes this paper.

II. MODIFIED ERROR
FUNCTION

First, we describe the conventional EBP al-
gorithm. Consider the MLP consisting of L
layers in which each l-th layer has Nl nodes.
Let the state vector of nodes in layer l be x.l/D
[x.l/1 ; x

.l/
2 ; : : : ; x.l/Nl

], and x.0/ and x.L/ be the
input and output vectors, respectively. Here,
x.l/j ; l 6D 0; has value between �1 and C1.
Also, let the desired output vector correspond-
ing to a training pattern be tD [t1; t2; : : : ; tNL ].
When an input pattern xp is presented to the
network and propagated forward to determine
the output signal, the state x.l/j in each l-th layer

is

x.l/j D f .a.l/j /D
2

1Cexp[�a.l/j ]
�1 (1)

where

a.l/j Dw.l/j0 C
Nl�1P
iD1
w
.l/
ji x.l�1/

i : (2)

Here, w
.l/
ji denotes the weight connecting

x.l�1/
i to x.l/j , and w.l/j0 denotes the bias to x.l/j .

The conventional m.s.e. function [2] is

Em .xp /D 1
2

NLP
kD1
.tk�x.L/k /2: (3)

To minimize Em.xp /, each weight is updated
by an amount proportional to the partial deriva-
tive of Em.xp/ with respect to the weight.
Therefore, we update the weight w.L/kj of the
output layer using

1w
.L/
kj D��

@Em

@a.L/k

@a.L/k

@w
.L/
kj

D�ı.L/k x.L�1/
j ; (4)

where

ı.L/k D�
@Em

@a.L/k

D .tk �x.L/k /
.1�x.L/k /.1Cx.L/k /

2
(5)

is the error signal and � is the learning rate. We
also update the weight w.l/ji below the output
layer using

1w
.l/
ji D�ı.l/j x.l�1/

i (6)

where

ı.l/j D
.1�x.l/j /.1Cx.l/j /

2

NlC1P
kD1
w.lC1/

kj ı.lC1/
k : (7)

Here, ı.l/j is the error signal back-propagated
through the weights of preceding layer. Also,
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the m.s.e. function for all P training patterns
is

EmD 1
P

PX
pD1

Em.xp / (8)

and we can minimize Em through the iterative

updates of weights for all training patterns.

In the above EBP algorithm, the error sig-

nal ı.L/k in (5) is the difference .tk�x.L/k / mul-

tiplied by the gradient of the sigmoid function.

If x.L/k approaches one of the two extreme val-

ues, the gradient factor in (5) makes the error

signal very small. Thus, the output node x.L/k

which has extreme value against tk cannot pro-

duce a strong error signal [4], [8]. This incor-

rect saturation retards the search for a mini-

mum in the error surface.
In order to accelerate the EBP algorithm,

one can use the cross-entropy error func-
tion[7], [8]

Ec.xp /D�
NLP

kD1
[.1C tk / ln.1Cx.L/k /

C.1� tk / ln.1�x.L/k /]: (9)

Using the above error function, the error signal
in (5) becomes

ı
.L/
k D tk�x.L/k (10)

and the other equations for updating the

weights are the same as the ones in the EBP

algorithm. Thus, the output nodes can escape

well from the state of incorrect saturation,

since the associated weights of the output layer

are adjusted proportional to the difference

.tk� x.L/k /. However, the difference error sig-

nal will make the MLP specialized too much

for training patterns, since the error signal is

relatively strong when x.L/k approaches tk , as

shown in Fig. 1(b).

During the learning process, the direction

of weight update for reducing error associated

with a specific training pattern will assist or

compete with that for reducing total error [3],

[8]. For instance, some of the output nodes

are pushed towards the wrong extreme value

by competition in the network. In this case,

a strong error signal is necessary for the in-

correctly saturated output node to escape the

wrong extreme value, like the cross-entropy

method. For the correctly saturated output

node, a weak error signal needs to be gener-

ated so that the weight update associated with

the training pattern can scarcely perturb the

weights trained for all training patterns [15].

These strong and weak error signals according

to the situation of output nodes can minimize

the competition. The weak error signal is also

necessary to prevent the overspecialization of

learning for the training patterns.
In this sense, we propose the modified er-

ror function

El .xp /D�
NLP

kD1
tk[�x.L/k C

1C tk
2

2
ln

1Cx.L/k

1�x.L/k

Ctk ln.1�x.L/k /.1Cx.L/k /]: (11)

Using the above error function, the error signal
is

ı
.L/
k D

tk .tk�x.L/k /2

2
(12)

and the other equations for updating weights

are the same. Figure 1 shows the error func-

tion and error signal in each method. As shown
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Fig. 1. The error functions and error signals in the three

learning methods when tk D1.

in Fig. 1(b), the modified error signal can sat-

isfy the above criteria which request a strong

error signal for the incorrectly saturated output

node and a weak error signal for the correctly

saturated output node. After all, we can reduce

the incorrect saturation of output nodes due to

the competition, and prevent the overspecial-

ization for training patterns.

When the MLP parameters are chosen to

minimize the conventional m.s.e. or cross-

entropy error function, the outputs estimate the

conditional expectations of the desired outputs

[9]. Using the same method as in [9], we can

show that the modified error function has the

same property. We verify the efficiency of the

proposed method through a handwritten digit

recognition, which is described in the next sec-

tion.

III. SIMULATION RESULTS

A handwritten digit recognition problem

is used to compare the conventional EBP

method, the cross-entropy method, and our

proposed method. A total of 2,308 handwritten

digitized images from the CEDAR database

[1] are used for training after size normaliza-

tion. A digit image consists of 12�12 pixels

and each pixel is represented by one of 16 grey

levels. We use an MLP architecture that con-

sists of 144 inputs, 30 hidden nodes, and 10

output nodes for training. We use local coding

for the target pattern.

Since no fair comparison is possible if the

learning rate is kept the same for all three meth-

ods [8], we derive the learning rates so that

the expectation value of �ı.L/k has the same

value in each method. Here, we assume that

x.L/k has uniform distribution between �1 and

C1. As a result, the learning rates of 0.06,

0.02, and 0.03 are used for the conventional

EBP method, the cross-entropy method, and

the proposed method, respectively. Nine sim-

ulations are conducted using each method with
the same initializations and the results are av-

eraged. The initial weights were selected at

random from an uniform distribution between

�1� 10�4 and 1� 10�4. Figure 2 shows the

misclassification ratio and m.s.e. for the train-
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Fig. 2. The misclassification ratio and the mean-squared

error for training patterns using the conventional

EBP method, the cross-entropy method, and the

proposed method.

ing patterns at each learning sweep using the

three methods. The cross-entropy method ac-
celerates the reduction of m.s.e. and achieves

the perfect classification for the training pat-

terns, since the output nodes escape the in-

correct saturation during learning as shown

in Fig. 3. The proposed method performs

the same during learning. Furthermore, our

method has a very small incorrect saturation

ratio in the initial stage of learning (see Fig. 3,

dashed line), as expected. On the contrary, the

conventional EBP algorithm cannot achieve

good performance for the training patterns,

since some output nodes cannot escape the

incorrect saturation through the conventional

EBP learning, as shown in Fig. 3.
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Fig. 3. The incorrect saturation ratio of output nodes for

training patterns using the three learning methods.

In the cross-entropy method, the m.s.e. for

the training patterns decreases very sharply in

the final stage of learning. On the contrary, the

simulationresults for 2,213 test patterns are the

worst as shown in Fig. 4. This implies that the

MLP is specialized too much for the training

patterns. In the proposed method, the error sig-

nals become small when the output values are
near the target values and the overspecializa-

tion as in the cross-entropy method does not

occur. Thus, the simulation results for the test

patterns using the proposed method are supe-

rior to those using the cross-entropy method.
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Fig. 4. The misclassification ratio and m.s.e. for test pat-

terns using the three learning methods.

In order to show the effectiveness of our

method for complex problems, we simulate the

handwritten digit recognition problem with a

total of 18,468 training images after size nor-

malization. Increasing the number of training
patterns may make the classification problem

more complex. Therefore, very small learn-

ing rates of 0.006, 0.002, and 0.003 are used

for the conventional EBP method, the cross-

entropy method, and the proposed method, re-

spectively. As shown in Figure 5, no method

can attain 0% incorrect saturation ratio dur-

ing learning process. However, the proposed

method shows the lowest ratio of incorrect sat-

uration. Also, it attains 99.8% correct classifi-

cation ratio for the training patterns and 94.7%

for the 2,213 test patterns at 300 sweep, which

are superior to those of the others. Thus, our

new method excels the others in incorrect sat-

uration of output nodes as well as in general-
ization, especially for complex problems.

For a further comparison, we propose an
adaptive learning rate at each sweep n as

�.n/D�o

vuut E[.tk .n/�x.L/k .n//2]

E[ı.L/k

2
.n/]

: (13)

Here, �o is the learning rate at the first sweep,

and E[.tk .n/�x.L/k .n//2] and E[ı.L/k

2
.n/] are

the expectation values considering all of the
output nodes and training patterns in the n-
th sweep. Then, the expected intensity of
�.n/ı.L/k .n/ which determines the amount of
weight update is

E[�2.n/ı.L/k

2
.n/]D�2

o E[.tk .n/�x.L/k .n//2]:

(14)

Thus, we can use the functional characteris-

tic of ı.L/k for updating weights while the ex-

pected intensity of �.n/ı.L/k has the same value

as that in the cross-entropy method. Here,

the adaptation of learning rate does not af-

fect the cross-entropy learning method because

the error signal ı.L/k generated by the cross-

entropy error function is .tk�x.L/k /. However,

in simulation of real problems, we cannot esti-

mate E[.tk .n/�x.L/k .n//2] and E[ı.L/k

2
.n/] at
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Fig. 5. The incorrect saturation ratio, misclassifica-

tion ratio for training patterns, and misclassifica-

tion ratio for test patterns using the three learning

methods with 18,468 training patterns.

the beginning of sweep n. Therefore, we use

the two expected values estimated through the

.n�1/-th sweep to calculate �.n/.
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Fig. 6. The m.s.e. for training and test patterns of

the three EBP algorithms with adaptive learning

rates.

Figure 6 shows the averaged results of four

simulations using the three learning methods

with the adaptive learning rate. Here, the

initial learning rate �o is 0.02 and the ini-

tial weights are drawn uniformly in [�1 �
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10�4;C1�10�4]. Also, the 2,308 training pat-

terns and 2,213 test patterns are used for eval-

uation of learning. In the proposed method,

the adaptive learning rate accelerates the fi-

nal convergence of m.s.e. for the training pat-

terns (Fig. 6(a)). However, in Fig. 6(b), the

proposed method with the adaptive learning

rate shows worse generalization capacity than

that with the fixed learning rate 0.03 (Fig. 4(a),

dashed line), since the adaptive learning rate

makes the error signal strong when x.L/k ap-

proaches tk. This fact indirectly supports

the previous argument that the cross-entropy

method overspecializes the MLP for the train-

ing patterns because of the strong error signal,

while the proposed method does not.

Although the adaptive learning rate accel-
erates the decrement of the error, it makes vari-
ation in the error curve. The variation appears
especially severe in the conventional EBP al-
gorithm. For explanation of the variation,
Fig. 7 shows the m.s.e. per output node, the
adaptive learning rate, and the incorrect satu-
ration ratio for the training patterns in a sim-
ulation using the conventional EBP algorithm.
When the m.s.e. decreases, the adaptive learn-
ing rate �.n/ increases according to (13). The
enlarged �.n/ accelerates the decrement of the
error. However, the enlarged �.n/ amplifies
the possibility of competition. If some output
nodes are saturated incorrectly by the compe-
tition, the m.s.e. increases and �.n/ decreases.
Thus, the positive feedback between the error
decreasing and the learning rate, and the nega-
tive feedback from the incorrect saturation to
the learning rate make variation in the error
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Fig. 7. A simulation result for training patterns using the

conventional EBP algorithm with adaptive learn-

ing rate.

curve.

Figure 8 shows a similar simulation result
with the proposed method. Here, the competi-
tion is minimized and the output node can es-
cape the incorrect saturation well. As a result,
the variation is terminated after some periods
of learning and the positive feedback is perma-
nent.
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Fig. 8. A simulation result for training patterns using the

proposed method with adaptive learning rate.

IV. CONCLUSION

In this paper, we proposed a modified error
function of EBP algorithm to resolve the slow
learning and specialization problem in pattern
recognition applications. Using the modified
error function, the error signal can be repre-
sented by a square function of the difference
between the desired and actual output values.
This accelerates the learning speed of EBP al-
gorithm through the effective elimination of

the incorrect saturation, and prevents the over-
specialization of learning for the training pat-
terns.

We have compared the proposed method
with the conventional EBP algorithm and
cross-entropy method through the simula-
tion of classifying handwritten digits in the
CEDAR [1] database. The simulation results
showed that, although the cross-entropy
method markedly reduced learning time, it
tended to overspecialize the MLP for the
training patterns, resulting poor generaliza-
tion capability for the test patterns. On the
contrary, the conventional EBP algorithm did
not show good performance for the training
patterns although it showed better generaliza-
tion capacity for the test patterns. Compared
to these methods, our approach showed good
performance for both the training and test pat-
terns especially in complex problems, since it
effectively eliminated the incorrect saturation
and prevented the overspecialization during
learning.
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