An Adaptive Leaming Rate with Limited Error Signals
for Training of Multilayer Perceptrons

Although an n-th order cross-entropy (nCE) error function
resolves the incorrect saturation problem of conventional
error backpropagation (EBP) algorithm, performance of
multilayer perceptrons (MLPs) trained using the nCE
function depends heavily on the order of nCE. In this paper,
we propose an adaptive learning rate to markedly reduce
the sensitivity of MLP performance to the order of nCE.
Additionally, we propose to limit error signal values at out-
put nodes for stable learning with the adaptive learning
rate. Through simulations of handwritten digit recognition
and isolated-word recognition tasks, it was verified that the
proposed method successfully reduced the performance
dependency of MLPs on the nCE order while maintaining
advantages of the nCE function.
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I. INTRODUCTION

Multilayer perceptron (MLP) is the most popular neural net-
work model which has wide application areas such as mobile
telecommunications [1], [2], ATM networks [3], [4], pattern
recognition [5], speech recognition [6], time series prediction
[7], and nonlinear control [8]. Especially theoretical analyses of
MLPs in mathematical or statistical aspects support the appli-
cations and research efforts for MLPs [9]-[12].

Training of MLPs is usually done by the error backpropagation
(EBP) algorithm [13], in which weights are iteratively updated
according to the negative gradient of the mean-squared error
(MSE) function, so called “error signal.” In the output layer, the
error signal is the difference between desired and actual output
values multiplied by the gradient of sigmoid activation function.
Then, the error signal is back-propagated to hidden layers.

The EBP algorithm, however, has a drawback with slow
learning speed due to an incorrect saturation of output nodes.
When an output node is incorrectly saturated during learning,
the amount of weight change is small due to the small gradient
of sigmoid activation function and the error remains nearly un-
changed [14]-{16].

In order to resolve this problem, van Ooyen and Nienhuis
proposed the cross-entropy (CE) error function which removed
the gradient of the sigmoid function at the error signal of output
nodes [17]. As an extended formulation of the CE function, the
n-th order cross-entropy (nCE) error function was proposed to
resolve the incorrect saturation problem as well as to prevent
overfitting of MLPs for training patterns [18]. This was achieved
by generating a strong error signal for incorrectly saturated out-
put nodes and a weak error signal for correctly saturated output
nodes. However, performance of the trained MLPs depends
heavily on the order of nCE function and one should find an
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optimum order of the nCE function to obtain good training re-
sults of MLPs with fast learning speed.

This paper proposes an adaptive learning rate to make the
performance of MLPs insensitive to the order of nCE error.
The proposed adaptive learning rate complements the variation
of error signals on the order of nCE error. Additionally, it is
proposed to limit error signal values of output nodes to prevent
unstable characteristic of learning due to the adaptive learmning
rate. There are many techniques for adapting learning rates of
EBP algorithm such as the bold driver [19], [20], delta-bar-
delta [21], and optimum learning rates [22]. Although these
accelerate the EBP algorithm, they do not have ability to reduce
the performance dependency of MLPs on the order of nCE error
functional.

This paper is organized as follows. Section II briefly reviews
the nCE error function for EBP algorithm. Section III points out
the performance variation of MLPs on the order of nCE and
describes an adaptive learing rate with limited error signals to
make MLPs insensitive to the order of nCE. In section 1V, the
effectiveness of the proposed method is demonstrated in hand-
written digit recognition and isolated-word recognition tasks.
Finally, Section V concludes this paper.

II. »-TH ORDER CROSS-ENTROPY ERROR

Consider an MLP consisting of L layers in which each /-th
layer has N, nodes. Let the state vector of nodes in layer /
be x“ =[x, x{",---,x{’],and x and x* be the input
and output vectors, respectively. Here, x!"(/ # 0) has a value
between —1 and 1. Also, let the desired output vector corre-
sponding to a training pattern x be t =[¢,,¢,,---,f,, ]. When
X is presented to the network, the state x!" in the /-th layer is

() Nt (1) . (1-1)
w - X
xg.l):tanh( Jjo Zz_l Ji i ),
‘ 2

1=1,2,--,L. (1)

Here, w! denotes the weight connecting x/™ to x| and

w'y denotes the biasto x!".

The conventional MSE function [13] is
Np
E, (x)= Z(tj -x{)?/2. ©)
/':

To minimize F, (x), each weight is updated by
Aw) =ndPx!"™. 3)

Here,
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nCE (n=2) ——
nCE (n=4) =

5

Fig. 1. The error signal of output node with ¢, =1. x!" is the-th

(L)

output value and 5}“ is the error signal of x}™.

1=x)(1+x®
I X X X; )(t/__x(/_D),wherel:L,
0" =p

2
1= xOY(1 + x®
§ x,)z( X)) Liwd e where 1 <1< L-1

is the error signal and 1} is the learning rate.
In the above EBP algorithm, the output node x!"’ which has
an extreme value opposite to ¢, cannot make a strong error

Q)

signal for adjusting the weights significantly [16], [17], as shown
in Fig. 1. This incorrect saturation retards the search for a
minimum in the error surface.

To resolve the incorrect saturation problem, the CE error
function provides a strong error signal for the incorrectly satu-
rated output nodes [17]. Additionally a weak error signal needs
to be generated for correctly saturated output nodes so that the
weight update associated with a training pattern scarcely
perturbs the weights trained for all training patterns. The weak
error signal is also necessary to prevent overfitting of learning
for training patterns [6].

In this sense, an nCE error function [ 18] was proposed as

W, —xthy

E,(x)=-Y [——ZL—dx'\",
Jz:lI 22 (1=x7) !
wheret; =tlandn =12, 5)

Using the above error function, the error signal of output layer
becomes

n+l — (L)n
e —x)

(L) =
5j 2n—1

©)

The nCE error function with n =1 corresponds to the CE
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error function. As shown in Fig. 1, the nCE error signal with
n =2 satisfies the above criterion, which provides a strong error
signal for an incorrectly saturated output node and a weak error
signal for a correctly saturated output node.

If the target values are not 1 but between —1 and+1, the
slight modification of (6) as

[sen(z, —x{")]"" (¢, - x;")"
5](L) - J J — J J (7)
2
will make the idea of nCE error work well. Here,
1, ifx=0
sgn(x) = Etl, otherwise. ®

III. AN ADAPTIVE LEARNING RATE WITH
LIMITED ERROR SIGNALS

If n of the nCE function increases from 2 to a higher value,
the error signal will more effectively reduce the incorrect satu-
ration of output nodes and prevent the overfitting for training
patterns [18]. However, a very weak error signal for output no-
des near desired values will delay learning since the associated
weights are changed very small. And the training speed of
MLPs as well as the classification performance for test patterns
vary seriously on the order of nCE error. Therefore, an opti-
mum order of the nCE function should be determined for good
classification performance of MLPs with fast learning speed.

To remove the performance dependency of MLPs on the order
of nCE, we propose an adaptive learning rate at each learning
epoch s as

E{(t.(s) —xP(s))?
n(s)=n, i, )(L)z/ ) }- ®
E{0;7 (s)}
Here, n, 1is an initial value of learning rate, and

E{(t;(s) = x'"(s))*} and E{0\""(s)} are the expected val-
ues considering all output nodes in the s-th epoch. In the CE
method, the learning rate is always n, since O!"(s)=
t;(s) = x{"(s). Although n(s) is dependent on 6" (s), the
expected intensity of 17(s)d!"'(s) is

EN* ()3 ()} =n2E{(t;(s) —x'P (s))*} (10)

irrespective of the formulation of &{"(s). Thus, the functional
characteristics of 0" can be used for updating weights while
the expected intensity of 17(s)d!"'(s) keeps the same value as
that in the CE method. In simulations, r(s) is calculated using
E{(t; —x'")*} and E{6!""} estimated at the (s —1)-th epoch
since they can not be derived at the beginning of the s-th epoch.
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In the EBP algorithm using the nCE function, the adaptive
learning rate may remove the dependency of learning on the
order of nCE, while keeping the main effects of nCE function,
i.e., reduction of incorrectly saturated output nodes and preven-
tion of overfitting for training patterns. For a specific training
pattern  x , however, the fraction term in the square-root of (9) is

(1,0 =x"(x)° _ 2
&M ()

2(n-1) 1
t,-(X)‘Xﬁ-”(X)) v

by substitution of (6) and the fraction will increase when
x{"(x) converges to ¢;(x). That s, r7(s) may take a very large
value when E{(¢;(s) - x B (s5))*} approaches to zero. Although
n(s) is very large, there are not oscillation or unstable problems
of learning in the case that all output nodes approach to their
target values. This can be easily verified from (10) which implies
that the expected updating amount of weights is proportional to
the distance between desired and actual output values multiplied
by the initial learming rate. We can shortly prove this convergence
as follows. When the weights approach to the minimum of error
functional and all output nodes are near to their target values, it can

be approximated that \/E{(t,.(s) -xP(s))} = | t(s)= xf.“(s)|

and \E{S'" (5)} =

of w!/’ associated with a training pattern is

. Therefore, the updating amount

|AW(L)(S)| =n(s) % |5;L) (s)| X |fo'“ (s)|

t,(s) = x5 (s) .
° W g xR a2
by substitution of the approximations into (9). Thus,
|Aw(“(s)| =n, X |tj (s)=x{" (s)| x |fo’“ (s)| =0 (13)

when all output nodes approach to their target values.

If some output nodes are far from their target values and the
associated error signals are large, however, the large n(s)
results in an unwanted phenomenon that the updating amount
of weights associated with the large error signals is more than
that needed to minimize the nCE error functional. Thus, the
adaptive learing rate may make training of MLPs unstable.

In order to suppress the excessive change of weights due to
the large learning rate, we propose to limit error signal values
of output nodes as

s = P S (] <5 <3ES ]
@gn(é‘“)X%/E[é‘“ (s)], otherwise.
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Using the limited error signal, the possibility of unstable learmn-
ing will be reduced since the maximum value of weight change
in the output layer is

aw® ()] =n(s) x5 s)|
=30, xS ELE, () = xP ()] (15)

x| ()|

Backpropagation of the limited error signals also prevents an
excessive change of weights in hidden layers.

If 5“(s) is Gaussian with zero mean, @ =4/E[6"" (s)]
and 99.7 % of d!"'(s) willbein *30. Thus, the limited error
signal (14) will change only a small portion of &{". Although
0!"'(s) is not Gaussian in real problems, it will be shown in

the simulation section that E[3{"(s)] =0 and major portion

of & iswithin %3, E[3*" (s)].

It looks more reasonable than (10) that E{n(s)3:" (s)}
=n,E{(t,(s)—x{"(s))}. This is achievable if we use
E{0{"(s)} and E{(t,(s)—x'"(s))} instead of the expecta-
tions of squares in (9), respectively. If we adopt this strategy,
however, E{0!"(s)} is nearly zero although MLPs are not
sufficiently trained and (s) will increase too much to minimize

error. Thus, the proposed learning rate by (9) is better after all.
Otherwise, we can use E{|5;“(s)|} and E{|tj (s) - x}“(s)|} in

(9) to achieve E{|n(s)5j.“ (s)|} =n, E{|t L(5)—x (s)|}.

When comparing performance of various error functions
which are proposed for the EBP algorithm [6], [13], [17], [18],
[23], learning rates are very important for fair comparison. Due
to the stochastic property of d!”, many usually used a heu-
ristic rule or assumed a distribution of output nodes to allocate
the learning rates [17], [18]. If the proposed adaptive learning
rate is used for the comparison, the expected intensity of
n(s)0" (s) will be same during the learning process although
0" (s)’s are different. Thus, the proposed learning rate is ade-
quate for fairly comparing performance of EBP algorithms
using various error functions.

There are the other techniques for adapting learning rates of
EBP algorithm. In the bold driver technique, the learning rate is
increased if the error has actually decreased after each epoch
and decreased if not [19], [20]. The delta-bar-delta rule adopts
one learing rate for each weight and adapts the learning rates
according to the signs of gradients on consecutive epochs [21].
Contrary to the two heuristic methods, optimum learning rates
were derived for each neuron and training pattern through
linear approximation of hidden activation function and deriva-
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tives of error functional with respect to learning rates [22].
Since all these were proposed to accelerate the EBP algorithm,
they can not remove the performance dependency of learning
on the order of nCE function. Conversely, the above three
methods may have better acceleration performance than the
proposed adaptive learning rate.

IV. SIMULATION

A handwritten digit recognition problem was used to verify
the effectiveness of the adaptive learning rate and limited error
signals. A total of 18,468 handwritten digitized images from
the CEDAR database [24] were used for training after size
normalization. A digit image consisted of 12%12 pixels and
each pixel took on integer values from 0 to 15. Figure 2 shows
some examples of digit images. The MLP consisted of 144
inputs, 30 hidden nodes, and 10 output nodes. Initialized
weights were drawn at random from a uniform distribution on
[-1x107*,1x10™]. Nine simulations were conducted using
each order of the nCE error function and the results were aver-
aged to draw figures.
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M

Fig. 2. Examples of handwritten digit images.

Firstly, MLPs were trained using the nCE error with a fixed
learning rate. The learning rate for each order of nCE was de-
rived as 7 =0.001x(n +1) so that E{nd{"’} had the same
value under the assumption that x'*’ had uniform distribution
on [-1, +1]. The max rule also was used for classification of
input patterns, that is, the index of maximum output node rep-
resented the classification result.

As shown in Fig. 3(a) which is the misclassification rates for
the training patterns, the curves with n =2 and 3 decrease more
rapidly than one with »n =1 which corresponds to CE. Although
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Fig. 3. Simulation results with the fixed learning rates for the handwritten digit recognition task.

it was shown that CE was better than MSE in the simulation of
same problem using EBP algorithm [18], the poor performance
of CE in this figure is mainly due to the competition during
learning process. In the competition stage of learning, the di-
rection of weight update for reducing total error and that for
reducing error associated with a specific training pattern com-
pete with each other [15]. To alleviate the competition, the
weight update associated with a training pattern should scarely
perturb the weights trained for all training patterns. In this sense,
a weak error signal needs to be generated for output nodes near
desired values. However, the error signal with n =1 is rela-
tively strong near a desired value as shown in Fig. 1 and this
property induces more competitions than those with n > 2.
When n =4, the misclassification curves decrease more slowly
since error signals are very small near desired values.

Figure 3(b) shows the misclassification rates for untrained
2,213 test patterns. The rate with # =1 shows poor generali-
zation since the CE error makes the MLP specialized too much
for training patterns [18]. With increasing » until 5, we can
get more improved results for the test patterns since weak error
signals near desired values prevent overfitting for training pattemns.
With n>6, however, very weak error signals near desired
values retard learning and the misclassification curves decrease
very slowly. From these results, n =3 or 4 can be taken as an
optimum order of the nCE in viewpoints of training speed and
generalization performance.

To remove the performance variation on the order of nCE,
the proposed method was adopted for training and the simula-
tion results were drawn in Fig. 4(a) and (b). Comparing Fig.
4(a) with Fig. 3(a) which corresponds to the misclassification
rates for the training patterns, it can be found that the proposed
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method successfully decreases the learning speed dependency
on the order of nCE. Figure 4(b) shows the misclassification rates
for the test patterns. The curve with # =1 shows poor generali-
zation performance since this curve corresponds to the CE
method. With n>2, the curves show better classification
rates for the test patterns than that with the CE error. Compar-
ing Fig. 4(b) with Fig. 3(b), it can be said that the proposed
method reduces the variation of generalization performance on
the order of nCE error. Thus, the proposed method alleviates the
performance variation on the order of nCE, while it maintains the
effect of nCE on preventing overfitting of MLP for training pat-
terns. Naturally the proposed method maintains the effect of nCE
on reducing incorrect saturation of output nodes.

Next, the probability density function of § ,(»L)(S) and its
thresholding value given by (14) were estimated. For this esti-
mation, the range (=2, +2) of d!”(s) was divided into 200
bins and the number of &!"(s) which belonged to each bin
was counted during an epoch. The counted results were nor-
malized using the number of training patterns multiplied by the

number of output nodes. Figure 5 (a) and (b) show the estimat-

ed results at the 150th and 450th epochs when an MLP is
trained using nCE (n =4) with the proposed method. As

shown in these figures, 3"’ (s) is mainly in 5— 3\/E[6‘f.”2 )],

3y E[6 ()] E with nearly zero mean. Thus, the limited er-

ror signal makes a little effect on the training of MLPs with the
nCE error function.

Previously, it was suggested that thresholding of error signals
was necessary to prevent unstable learning due to an excessive

ETRI Journal, Volume 22, Number 3, September 2000
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Fig. 4. Simulation results with the adaptive learning rate and limited error signals for the handwritten digit recognition task.
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Fig. 5. Estimated results of probability density function and thresholding value for 0 }L) (a) at the 150th epoch and (b) at the 450th epoch.

change of weights with very large learning rates. To verify this
argument, MLPs were trained only with the adaptive learning
rate without thresholding of &!". Figure 6 (a), (b), and (c) are

the adaptive learming rate, the misclassification rate for the
training patterns, and that for the test patterns, respectively,
when an MLP initialized with a set of random weights was
trained using the nCE error function with n = 4.

When output nodes converge to their target values during the
progress of learning, the adaptive learning rate increases as
shown in Fig. 6(a). It also accelerates training and the misclas-
sification rate in Fig. 6(b) decreases more rapidly than those in
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Fig. 3(a) or 4(a). Although the training patterns are perfectly
classified after the 150th training epoch, the misclassification
rate for the test patterns in Fig. 6(c) is not satisfactory because
the acceleration by the adaptive learning rate induces overfit-
ting for training patterns. The positive feedback between the
learning rate and classification rate ends up with drastic in-
creasing of the misclassification at the 220th epoch. As de-
scribed before, this is due to the adaptive learning rate which
becomes larger than that needed to minimize the error function.
After then, there is a progress of learning again with a de-
creased learning rate caused by increasing of the distance be-
tween desired and actual values of output nodes.
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Fig. 6. A simulation result with the adaptive learning rate without thresholding error signals in the handwritten digit recognition task.
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Fig. 7. Simulation results with the fixed learning rates for the isolated-word recognition task.

For more verification of the proposed method, an isolated-word
recognition problem was used in which the vocabulary consisted
of 50 words and each word was spoken two times by nine
speakers. The 900 patterns were used for training after extract-
ing the ZCPA feature of 1,024 dimensions [25]. The MLP con-
sisted of 1,024 inputs, 50 hidden nodes, and 50 output nodes.
Nine simulations were conducted with initial weights randomly
drawn from a uniform distribution on [-1x107,1x107]
and the results were averaged. Generalization performance for
this task was evaluated using untrained 1050 test patterns,
which were the 50 words spoken three times by seven speakers.
Figure 7(a) and (b) are the simulation results with fixed learn-
ing rates 1] =0.01%(n +1). In these figures, the misclassifi-
cation rates for the training and test patterns vary seriously on
the order of nCE error function. Figure 8 is the simulation results
using the proposed adaptive learning rate and limited error
signals. It is clear that the performance variation on the order of
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nCE error is dramatically reduced by the proposed method.
This is consistent with the simulation results for the handwrit-
ten digit recognition task.

Besides the proposed adaptive learning rate, there might be
other methods to reduce the performance dependency of MLPs
on the order of nCE. For example, we can adapt the order of
nCE according to progress of learning. However, this method
needs heuristics to select an order of nCE at any learning stage.

In application of MLPs to pattern recognition, it is important to
choose the number of hidden neurons since the training speed
and performance of MLPs depend strongly on the number of
hidden neurons. Here, we used a pruning method to choose the
number of hidden neurons in the two experiments of this paper. It
is usually said that the hidden neurons of the single hidden layer
perceptron are trained to extract features from input patterns. This
process is done by a series of linear projections onto weight vec-
tors and element-wise sigmoid transformations. After successful

ETRI Journal, Volume 22, Number 3, September 2000
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Fig. 8. Simulation results with the adaptive learning rate and limited error signals for the isolated-word recognition task.

training of the MLP, hidden weight vectors tend to be near-
orthogonal to extract useful features [26]. If some hidden weight
vectors are similar to each other, they extract similar features
and we can remove one among them.

In this point of view, we trained an MLP with many hidden
neurons and pruned hidden neurons one by one based on the
pair-wise inner products of normalized hidden weight vectors
when there was no progress of leaming. After each pruning
procedure of one hidden neuron, the MLP recovered the classi-
fication ability of patterns with additional learning. If the MLP
could not recover the classification rate, the hidden neurons
were pruned too many. Finally, we chose the number of hidden
neurons in the two experiments of this paper based on the
pruning results with some marginal number.

V. CONCLUSION

Although MLPs trained using the nCE error function show
good performance, the training speed of MLPs as well as the
classification performance for test patterns vary seriously on
the nCE order. This paper proposed an adaptive learning rate to
make performance of MLPs insensitive to the order of nCE error
function. The proposed adaptive learning rate complemented
the variation of error signals on the nCE order by regulating
that the expected intensity of the error signal multiplied by the
adaptive learning rate was the same for different orders of nCE.
The adaptive learning rate has an weakness that it may take a
very large value during a progress of learning. This results in an
unstable characteristic of learing, i.e., the updating amount of
weights is more than that needed to minimize the nCE error
functional. A limited error signal of output node was addition-
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ally proposed to prevent the excessive change of weights due to
the large learning rate.

The effectiveness of the proposed method was demonstrated
through the simulation of handwritten digit and isolated-word
recognition tasks. In the simulation, it was shown that the pro-
posed method reduced the performance variation on the the order
of nCE error, while maintaining the effect of nCE on preventing
overspecialization of MLPs for training patterns. Also, it was
verified that the limited error signals effectively removed the
unstable learning caused by a large value of the adaptive learning
rate. In addition to removing the performance dependency on
the order of nCE function, the proposed method will be suitable
for fair comparison of EBP algorithms using various error
functions.
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