
Machine Learning



Contents

1. Introduction

2. K-Nearest Neighbor Algorithm

3. LDA(Linear Discriminant Analysis)

4. Perceptron

5. Feed-Forward Neural Networks

6. RNN(Recurrent Neural Networks)

7. SVM(Support Vector Machine)

8. Ensemble Learning

9. CNN(Convolutional Neural Network)

10. PCA(Principal Component Analysis)

11. ICA(Independent Component Analysis)

12. Clustering

13. GAN(Generative Adversarial Network) 



9.1. Historical Background of CNN

• Feed-forward Neural Networks (Chap. 5)
• Fully-Connected 

• Too many weights for training 

• Slow learning convergence and High computational complexity 

• Overspecialization to training samples (poor generalization performance)

➢ Locally-Connected Networks (Visual pathway of mammal)

• Visual Pathway
• Hubel and Wiesel (1950s and 1960s)

• Cat and monkey visual cortexes contain neurons that individually respond to small 
regions of the visual field. → Receptive Field

• Simple Cells in V1 layer, whose output is maximized by straight edges having 
particular orientations within their receptive field

• Complex Cells in V1 and V2 layer, which have larger receptive fields, whose output is 
insensitive to the exact position of the edges in the field.

https://en.wikipedia.org/wiki/Cortex_(anatomy)
https://en.wikipedia.org/wiki/Visual_field
https://en.wikipedia.org/wiki/Receptive_field


• Visual Pathway
• Keiji Tanaka (1990s)

• Monkey visual cortexes

• Input End: Visual cells respond to 
simple features

• Output End: Visual cells respond to 
complex features

where

what

V1V2

V4
TEO

TE

TE TEO V4 V2

Mature Elaborate Cells Immature Elaborate Cells Primary Cells

https://en.wikipedia.org/wiki/Cortex_(anatomy)


• Neural Networks
• Fukushima (1980s)

• Neocognitrion

• S-cell : extracting local features

• C-cell : tolerance to features’ deformation such as local shifts



• Neural Networks
• LeCun (1990s)

• LeNet1



9.2. Convolution in (DSP)

𝑥[−1]δ[n+1]

𝑛−1

𝑥[0]δ[n]

𝑛0

𝑥[1]δ[n-1]

𝑛1

𝑥[𝑛]

𝑛0



LTI(Linear Time Invariant) System

Linear 
Time-Invariant 

System
T(.)

𝑥2[𝑛]

𝑥1[𝑛]

𝑦2[𝑛]

𝑦1[𝑛]

Linear 
Time-Invariant 

System
T(.)

𝑎𝑥1[𝑛]+𝑏𝑥2[𝑛] 𝑎𝑦1[𝑛]+𝑏𝑦2[𝑛]



LTI(Linear Time Invariant) System

δ[n]

𝑛0

ℎ[𝑛]

𝑛0

Digital Filter

Convolution

The Communitive Law



9.3. Convolutional Neural Network(CNN)

• CNN 
• consists of Convolution layer, Pooling Layer, and Fully-Connected Layer 

• Convolution Layer
• 1-D convolution

• H convolution nodes : depth H

• Feature Map (2-D)
• H vectors

• I elements 𝑥1 𝑥2 𝑥𝑑

𝒘𝒋

ℎ𝑗(1) ℎ𝑗(2) ℎ𝑗(3) ℎ𝑗(𝐼)



• Convolution Layer
• 2-D convolution

• Feature Map (3-D)

• Padding

• Stride

• Local Connectivity (receptive field of neuron)

• Parameter Sharing (filter or kernel)

𝑥

𝑤𝑗[𝑖, 𝑘]

ℎ𝑗



• Pooling Layer
• A form of nonlinear down sampling

• The exact location of a feature is less important than its rough location relative to
other features. The pooling layer serves to progressively reduce the spatial size of
the representation, to reduce the number of parameters, and amount of
computation in the network, and hence to also control overfitting. It is common to
periodically insert a pooling layer between successive convolutional layers in a CNN
architecture. The pooling operation provides another form of translation invariance.

• Max pooling is the most common
• It partitions the input image into a set of non-overlapping rectangles and, for each 

such sub-region, outputs the maximum. 

• Average Pooling, L2-norm Pooling

https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Partition_of_a_set


• Pooling Layer

ℎ𝑗(1) ℎ𝑗(2) ℎ𝑗(3) ℎ𝑗(𝐼)ℎ𝑗(4) ℎ𝑗(5) ℎ𝑗(6)

Pooling Pooling Pooling

ℎ𝑗

Pooling

Pooling
Pooling



• ReLU Layer
• ReLU(Rectified Linear Unit) for feature maps (before pooling)

• Other functions are also used to increase nonlinearity

IN
P
U
T

C
o
n
vo

lu
tio

n

A
ctiva

tio
n
 

Fu
n
ctio

n

P
o
o
lin

g



• Fully Connected Layer
• After several convolutional and max pooling layers, the high-level

reasoning in the neural network is done via fully connected layers.
Neurons in a fully connected layer have connections to all activations in
the previous layer, as seen in regular (non-convolutional) artificial neural
networks.

• SoftMax Output Node

• CE(Cross-Entropy) Loss Function

https://en.wikipedia.org/wiki/Artificial_neural_network






9.4. Hyperparameters and Regularization

• Choosing Hyperparameters
CNNs use more hyperparameters than a standard multilayer perceptron (MLP). While the usual rules 
for learning rates and regularization constants still apply, the following should be kept in mind when 
optimizing.

• Number of filters
✓Since feature map size decreases with depth, layers near the input layer will tend to have

fewer filters while higher layers can have more. To equalize computation at each layer,
the product of feature values va with pixel position is kept roughly constant across layers.
Preserving more information about the input would require keeping the total number of
activations (number of feature maps times number of pixel positions) non-decreasing
from one layer to the next.

• Filter shape
✓Common filter shapes found in the literature vary greatly, and are usually chosen based

on the dataset. The challenge is, thus, to find the right level of granularity so as to create
abstractions at the proper scale, given a particular dataset, and without overfitting.

• Max pooling shape
✓Typical values are 2×2. Very large input volumes may warrant 4×4 pooling in the lower

layers. However, choosing larger shapes will dramatically reduce the dimension of the
signal, and may result in excess information loss. Often, non-overlapping pooling
windows perform best.

https://en.wikipedia.org/wiki/Hyperparameter_(machine_learning)
https://en.wikipedia.org/w/index.php?title=Learning_rate&action=edit&redlink=1
https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Data_loss


• Regularization Methods

• Dropout
✓ Because a fully connected layer occupies most of the parameters, it is prone to overfitting.
✓One method to reduce overfitting is dropout. At each training stage, individual nodes are either

"dropped out" of the net with probability 1-p so that a reduced network is left; incoming and
outgoing edges to a dropped-out node are also removed. Only the reduced network is trained on
the data in that stage. The removed nodes are then reinserted into the network with their original
weights.

• Stochastic pooling
✓ In stochastic pooling,[52] the conventional deterministic pooling operations are replaced with a

stochastic procedure, where the activation within each pooling region is picked randomly according
to a multinomial distribution, given by the activities within the pooling region. This approach is free
of hyperparameters and can be combined with other regularization approaches, such as dropout
and data augmentation.

• Number of parameters
✓ Another simple way to prevent overfitting is to limit the number of parameters, typically by limiting

the number of hidden units in each layer or limiting network depth. For convolutional networks, the
filter size also affects the number of parameters. Limiting the number of parameters restricts the
predictive power of the network directly, reducing the complexity of the function that it can perform
on the data, and thus limits the amount of overfitting.

• Weight decay
✓ A simple form of added regularizer is weight decay, which simply adds an additional error,

proportional to the sum of weights (L1 norm) or squared magnitude (L2 norm) of the weight vector,
to the error at each node. The level of acceptable model complexity can be reduced by increasing
the proportionality constant, thus increasing the penalty for large weight vectors.

https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Dropout_(neural_networks)
https://en.wikipedia.org/wiki/Convolutional_neural_network#cite_note-55
https://en.wikipedia.org/wiki/Deterministic_algorithm
https://en.wikipedia.org/wiki/Multinomial_distribution
https://en.wikipedia.org/wiki/L1-norm
https://en.wikipedia.org/wiki/L2_norm
















9.5. Different Type of Convolutions

• Dilated Convolutions
• Dilated convolutions introduce

another parameter to convolutional
layers called the dilation rate. This
defines a spacing between the values
in a kernel. A 3x3 kernel with a
dilation rate of 2 will have the same
field of view as a 5x5 kernel, while
only using 9 parameters. Imagine
taking a 5x5 kernel and deleting every
second column and row.



• Transposed Convolutions
• An actual deconvolution reverts the process of a convolution.

• A transposed convolution is somewhat similar because it produces the
same spatial resolution a hypothetical deconvolutional layer would.
However, the actual mathematical operation that’s being performed on
the values is different. A transposed convolutional layer carries out a
regular convolution but reverts its spatial transformation.

• To achieve this, we need to perform some fancy padding on the input.



• Separable Convolutions
• To save computational cost by substituting 𝑓 × 𝑓 convolution filters with

the combination 𝑓 × 1 and 1× 𝑓 convolution filters.



• Depthwise Convolutions
• Assuming 𝑛 × 𝑛 × 𝑐 sized input with 𝑐 channels and 𝑓 × 𝑓 × 𝑐 convolution

filters.

• Step 1:Convolution of each 𝑛 × 𝑛 input with 𝑓 × 𝑓 filter

• Step 2: Combining the convolution results ..Output with 𝑐 channels



• Depthwise Separable Convolutions
• Assuming convolution of 𝑛 × 𝑛 × 𝑐 input with 𝐻 𝑓 × 𝑓 × 𝑐 filters (stride 1)

attains 𝑛 × 𝑛 × 𝐻 output

• To save computational costs but attain 𝑛 × 𝑛 × 𝐻 output.

• How? – depthwise separable convolution!



• Depthwise Separable Convolutions
① Depthwise convolution : 𝑛 × 𝑛 × 𝑐 output

② Convolution of 𝑛 × 𝑛 × 𝑐 data with 𝐻 1 × 1 × 𝑐 filters

• Pointwise convolution : convolution with 1 × 1 × 𝑐 filters
• Combining c channel data into 1 channel 1 × 1 × 𝑐 filters



• Depthwise Separable Convolutions
• Comparison of computational costs

A. Convolution of 𝑛 × 𝑛 × 𝑐 input with 𝐻 𝑓 × 𝑓 × 𝑐 filters (stride 1)

⇒𝑓 × 𝑓 × 𝑐 × 𝐻 × 𝑛 × 𝑛 multiplications

B. Depthwise separable convolution

⇒ ① depthwise convolution: 𝑓 × 𝑓 × 𝑐 × 𝑛 × 𝑛 multiplications

⇒ ② pointwise convolution: 𝑐 × 𝐻 × 𝑛 × 𝑛 multiplications

𝑓 × 𝑓 × 𝑐 × 𝑛 × 𝑛 + 𝑐 × 𝐻 × 𝑛 × 𝑛 multiplications

Ratio of computational Costs:
𝑓×𝑓×𝑐×𝑛×𝑛+𝑐×𝐻×𝑛×𝑛

𝑓×𝑓×𝑐×𝐻×𝑛×𝑛
=

1

𝐻
+

1

𝑓2 !!



9.6. Applications 

• Facial Expression Recognition

• EmotiW(Emotion Recognition in the Wild)
• Sub-competition: SFEW(Static Facial Recognition in the Wild)



• EmotiW(Emotion Recognition in the Wild)
• Sub-competition: SFEW(Static Facial Recognition in the Wild)



• EmotiW(Emotion Recognition in the Wild)
• Sub-competition: SFEW(Static Facial Recognition in the Wild)



• EmotiW(Emotion Recognition in the Wild)
• Sub-competition: SFEW(Static Facial Recognition in the Wild)



• EmotiW(Emotion Recognition in the Wild)
• Sub-competition: SFEW(Static Facial Recognition in the Wild)



• LeNet-5: MNIST 필기체 인식
𝑛: input size
𝑓: filter size

𝑝: padding

𝑠: stride

𝑁𝑐: number of filters (channels )

Convolution Results: 
𝑛+2𝑝−𝑓

𝑠
+ 1 ×

𝑛+2𝑝−𝑓

𝑠
+ 1 × 𝑁𝑐

Kernel shape: 5×5×6

1. 32x32 입력에 컨볼루션층과 풀링층을 적용

2. 완전연결층을 거친 후 10개의 SoftMax 출력노드로 필기체 숫자 인식



• AlextNet: ILSVRC2012(120만장의 영상을 1000개의 클래스로 구분)

𝑛: input size

𝑓: filter size

𝑝: padding

𝑠: stride

𝑁𝑐: number of filters

𝑛+2𝑝−𝑓

𝑠
+ 1 ×

𝑛+2𝑝−𝑓

𝑠
+ 1 × 𝑁𝑐

Kernel shape: 11× 11 × 3 Kernel shape: 5× 5 × 96 Kernel shape: 3× 3 × 256

1. 227x227 RGB영상에
컨볼루션층과 풀링층
통과

2. 컨볼루션층 통과

3. 풀링층 거친 후 완전
연결층으로 결과 출력

ILSVRC2012
Top-5 error 17%



• VGG-16: ILSVRC2014

층수를 늘리고 3x3 컨볼루션 필터 사용(s=1,p=1), 

완전연결층: 25088-4096-4096-1000



• ResNet: ILSVRC2015

Skip 
connections

Residual Learning Block Residual Learning Block 
for ReseNet-34

Residual Learning Block 
for ReseNet-50/101/152

• 층수가 아주 많아지면 성능의 저하 문제 발생: 해결책으로 잔류학습 블록을 제시

• 가정: 원하는 사상 H(x)를 직접 학습하는 것 보다 F(x)=H(x)-x 를 학습하는 것이 쉽다.

잔류학습 블록을 제시함.

신경회로망이 F(x)를 학습 후, 잔류학습 블록에서 F(x)+x를 출력함(ReLU 활성화 함수).



• ResNet: ILSVRC2015

ILSVRC2015
ResNet-152: Top-5 error 4.49% 

• 구조: 영상입력-7x7 컨볼루션층-cfg[0]블럭-cfg[1]블럭-cfg[2]블럭-cfg[3]블럭-완전연결 fc 1000

• 리스트 cfg는 아래 그림의 cfg[0], cfg[1], cfg[2], cfg[3] 블록을 주어진 수 만큼 지님을 나타냄

• 아래 그림은 cfg=[3,3,3,3]을 나타냄

예) 152층: (cfg[0] 3층+cfg[1] 8층+cfg[2] 36층+cfg[3] 3층)x3+2=152






