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4.1. Classification
• Credit scoring example: 

• Inputs are income and savings

• Output is low-risk vs. high-risk

• Formally speaking

• Decision rule: if we know 
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4.2. Bayes’ Optimal Classifier

• Bayes rule for one concept

• Bayes rule for K > 1 concepts

• Decision rule using Bayes rule (Bayes optimal classifier): 





4.3. Losses and Risks

• Credit scoring problem
• Accept low-risk applicant → increasing profits

• Reject high-risk applicant → decreasing losses

➢ increased loss by accepted high-risk applicant ≠ decreased gains by rejected low-risk applicant

• Errors are not symmetric! → Maximizing gains? Minimizing Losses?

• Define
𝛼𝑖 : Action assigning input to class 𝐶𝑖

𝜆𝑖𝑘 : Loss of 𝛼𝑖 although the real class is 𝐶𝑘

• Expected risk:

• Decision rule (minimum risk classifier):







0/1 Loss and Rejection
• 0/1 loss

• Minimum risk classifier = Bayes optimal classifier

• Rejection



4.4. Discriminant Functions 
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Likelihood-based vs. Discriminant-based 

• Likelihood-based classification

• Discriminant-based classification 

• Estimating the boundaries is enough; no need to accurately estimate 
the densities inside the boundaries! 



4.5. Linear Discriminant Function 

• Linear discriminant 

• Advantages: 

• Simple: O(d) space/computation 

• Knowledge extraction: Weighted sum of attributes; positive/negative 
weights, magnitudes (credit scoring) 

• Optimal when         are Gaussian with shared covariance matrix; 
useful when classes are (almost) linearly separable 
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Multiple Classes (One-vs-All) 
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Pairwise Separation (One-vs-One) 
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4.6. Single Layer Perceptron
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Single-Layer Perceptron with K Outputs 
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Gradient Descent 

4.7. Training Perceptron
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Gradient Descent 

Training Sample 

Perceptron Output 𝑦𝑡 Desired Output 𝑟𝑡

Regression (Linear Output) 
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Gradient Descent 

Training Sample 

Perceptron Output 𝑦𝑡 Desired Output 𝑟𝑡

Classification (Sigmoid Output) 





Expressiveness of Perceptrons
• Consider perceptron with a = step function 

• Can represent AND, OR, NOT, majority, etc., but not XOR 

• Represents a linear separator in input space: 




