Machine Learning

Contents

- 1. Introduction
- 2. K-Nearest Neighbor Algorithm
- 3. LDA(Linear Discriminant Analysis)
- 4. Perceptron
- 5. Feed-Forward Neural Networks
- 6. RNN(Recurrent Neural Networks)
- 7. SVM(Support Vector Machine)
- 8. Ensemble Learning
- 9. CNN(Convolutional Neural Network)
- 10. PCA(Principal Component Analysis)
- 11. ICA(Independent Component Analysis)
- 12. Clustering
- 13. GAN(Generative Adversarial Network)

7.1. Characteristics of Support Vector Machine

• Feed-forward Neural Network (Perceptron, MLP, RBFN..)

- Stochastic algorithm
- Generalizes well but need a lot of tuning
- Can be learned in incremental fashion
- To learn complex functions: use hidden layers

• SVM

- Deterministic algorithm
- Nice Generalization with few parameters to tune
- Hard to learn quadratic programming techniques
- Using kernel tricks to learn very complex functions

7.2. Linear Separator and Perceptron

• Linear Separator

$$g(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} + w_0 \qquad L = \left\{ \boldsymbol{w}^T \boldsymbol{x} + w_0 = 0 \right\}$$

• For any two points $x_1, x_2 \in L$

• Define unit normal vector
$$w^* = w/||w||$$

- For any point $x_0 \in L$, $w^T x_0 = -w_0$ Distance of any x to L, $w^* T(x x_0) = \frac{w^T x + w_0}{\|w\|}$

• The geometric margin of example $\langle x_i, y_i \rangle$ with respect to the hyperplane

 $w^{T}(x_{1}-x_{2})=0$

$$y_i \cdot \frac{\boldsymbol{w}^T \! \boldsymbol{x} \! + \! w_0}{|| \boldsymbol{w} ||}, \quad y_i \! \in \! \{-1, \! +1\}$$

• A point is misclassified iff its margin is negative

Perceptron Learning Algorithm

• To minimize

$$D(\boldsymbol{w}, w_0) = -\sum_{i \in M} y_i (\boldsymbol{w}^T \boldsymbol{x}_i + w_0)$$

 $\frac{\partial D(\boldsymbol{w}, w_0)}{\partial \boldsymbol{w}} = -\sum_{i \in M} y_i \boldsymbol{x}_i \qquad \qquad \frac{\partial D(\boldsymbol{w}, w_0)}{\partial w_0} = -\sum_{i \in M} y_i$

• Gradient

퍼셉트론 알고리즘
\bigcirc 입력과 목표 값의 쌍으로 구성된 학습패턴 < $m{x}_i, y_i$ > 를 저장한다.
① 가중치 w 와 w ₀ 를 임의의 값으로 초기화 시킨다.
② n개의 학습패턴에 대하여 가중치를 다음과 같이 변경시킨다.
If $y_i(\boldsymbol{w}^T \boldsymbol{x}_{i+} w_0) \le 0$ then $\begin{cases} \boldsymbol{w} := \boldsymbol{w} + y_i \boldsymbol{x}_i \\ w_0 := w_0 + y_i \end{cases}$ (7.2.9)
③ 오인식된 학습패턴이 있으면 과정 ②를 다시 수행한다.
④ 새로운 입력 \boldsymbol{x} 가 주어지면 $g(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} + w_0$ 의 부호로 예측한다.

Perceptron Algorithm: Dual Representation

- α_i : a count of the number of times that example *i* was misclassified
- Initial weights are all zeros
- Then, final weights are

.

$$\boldsymbol{w} = \sum_{i=1}^{n} \alpha_i y_i \boldsymbol{x}_i \qquad w_0 = \sum_{i=1}^{n} \alpha_i y_i$$

• The output of linear predictor is

$$h(\mathbf{x}) = sign(\mathbf{w}^{T}\mathbf{x} + w_{0}) = sign\sum_{i=1}^{n} \alpha_{i}y_{i}(\mathbf{x}_{i}^{T}\mathbf{x} + 1)$$

•	
.[퍼셉트론 알고리즘의 이중적 표현
	\bigcirc 입력과 목표값의 쌍으로 구성된 학습패턴 < $oldsymbol{x}_i, y_i$ > 를 저장한다.
	① α,는 영으로 초기화 시킨다.
	② 학습 패턴 n개에 대하여 가중치를 다음과 같이 변경시킨다.
•	n
•	If $\sum_{j=1} y_i \alpha_j y_j (x_j^2 x_{i+1}) \le 0$ then $\alpha_i := \alpha_i + 1$ (7.2.13)
	$\boldsymbol{w} = \sum_{i=1}^{n} \alpha_i y_i \boldsymbol{x}_i$ and $w_0 = \sum_{i=1}^{n} \alpha_i y_i$
·	③ ㅇ이시되 하스페터이 이ㅇ며 과저 ①르 다시 스해하다
·	③ 오인격관 획급패인이 있으면 과정 집을 다시 구행한다.
·	④ 새로운 입력 x가 주어지면 h(x)로 예측한다.

7.3. Support Vector Machine

- Maximizing the margin
- The decision boundary: determined by a subset of the data points, known as support vectors (indicated by the circles).

Support Vector Machine

- Support vector machines
 - Names a whole family of algorithms of the **maximum margin separator**. The idea is to find the separator with the maximum margin from all the data points.
- Optimization problem

$$\max_{w_0, oldsymbol{w}} C$$
 subject to $rac{1}{||oldsymbol{w}||} y_i(oldsymbol{w}^Toldsymbol{x}_i + w_0) \geq C \; i = 1, 2, ..., n$

• Set **||w||** to 1/C

$$\min_{w_0, \boldsymbol{w}} rac{1}{2} (\|\boldsymbol{w}\|)^2$$
 subject to $y_i(\boldsymbol{w}^T \boldsymbol{x}_i + w_0) \geq 1$ $i = 1, 2, .., n$

Support Vector Machine: Formulation

Quadratic optimization problem

 $\min_{w_0, \boldsymbol{w}} rac{1}{2} (\|\boldsymbol{w}\|)^2$ subject to $y_i(\boldsymbol{w}^T \boldsymbol{x}_i + w_0) \geq 1$ i = 1, 2, ..., n

• Lagrangian formulation of constrained optimization

$$\min_{w_0, \boldsymbol{w}} \max_{\alpha \ge 0} L(w_0, \boldsymbol{w}, \alpha) = \frac{1}{2} (\|\boldsymbol{w}\|)^2 - \sum_{i=1}^n \alpha_i \left[y_i (\boldsymbol{w}^T \boldsymbol{x}_i + w_0) - 1 \right]$$

• Kuhn-Tucker Theorem $\min_{w_0, \boldsymbol{w}} \max_{\alpha \ge 0} L(w_0, \boldsymbol{w}, \alpha) = \max_{\alpha \ge 0} \min_{w_0, \boldsymbol{w}} L(w_0, \boldsymbol{w}, \alpha)$

$$\frac{\partial L(w_0, \boldsymbol{w}, \alpha)}{\partial \boldsymbol{w}} = \boldsymbol{w} - \sum_{i=1}^n \alpha_i y_i \boldsymbol{x}_i = 0 \qquad \qquad \boldsymbol{w} = \sum_{i=1}^n \alpha_i y_i \boldsymbol{x}_i$$
$$\frac{\partial L(w_0, \boldsymbol{w}, \alpha)}{w_0} = -\sum_{i=1}^n \alpha_i y_i = 0 \qquad \qquad \sum_{i=1}^n \alpha_i y_i = 0$$

Support Vector Machine: Formulation & Solution

$$\boldsymbol{w} = \sum_{i=1}^{n} \alpha_{i} y_{i} \boldsymbol{x}_{i}$$

$$\min_{w_{0}, \boldsymbol{w}} \max_{\alpha \geq 0} L(w_{0}, \boldsymbol{w}, \alpha) = \frac{1}{2} (||\boldsymbol{w}||)^{2} - \sum_{i=1}^{n} \alpha_{i} [y_{i}(\boldsymbol{w}^{T}\boldsymbol{x}_{i} + w_{0}) - 1]$$

$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$L(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_{j} \alpha_{k} y_{j} y_{k}(\boldsymbol{x}_{j}^{T}\boldsymbol{x}_{k})$$

Maximize $L(\alpha)$ subject to $\boldsymbol{\alpha} \geq \boldsymbol{0}$ and $\sum_i \alpha_i y_i = \boldsymbol{0}$

Finding optimal α_i : computationally tractable quadratic programming problem Support Vector: points with margin=1

$$y_i(\boldsymbol{w}^T\boldsymbol{x}_i + w_0) = 1$$
 $w_0 = y_i - \boldsymbol{w}^T\boldsymbol{x}_i$

Support Vector Machines

- What if the problem is not linearly separable?
- Introduce slack variables
 - Need to minimize:

$$L(w,\xi) = \frac{\|\vec{w}\|^2}{2} + C\left(\sum_{i=1}^{m} \xi_i\right)$$

• Subject to:

$$y_i(\vec{w} \bullet \vec{x}_i + b) \ge 1 - \xi_i$$
, for all (\vec{x}_i, y_i) in D

Support Vector Machines

• What if decision boundary is not linear?

A nonseparable dataset in a two-dimensional space R^2 , and the same dataset mapped onto threedimensions with the third dimension being x^2+y^2 (source: <u>http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html</u>)

The decision boundary is shown in green, first in the three-dimensional space (left), then back in the twodimensional space (right). Same source as previous image. 예제 7.3-1

그림과 같이 2차원 공간상에 두 개의 클래스에 해당하는 점집합이 주어졌다. 사각형 클래스 는 $y_i = 1$, 원형 클래스는 $y_i = -1$ 이라고 두고서 퍼셉트론의 이중적 표현에 의한 학습을 두 epoch 동안 반복하여 보아라. 그리고, Support Vector의 지점을 구하고, 이를 근거로 SVM 에 의한 구분자를 구하여라.

내적	\boldsymbol{x}_1	\boldsymbol{x}_2	x ₃	\boldsymbol{x}_4	\boldsymbol{x}_{5}	\boldsymbol{x}_6
\boldsymbol{x}_1	20	6	22	10	16	8
\boldsymbol{x}_2	6	2	7	3	6	3
\boldsymbol{x}_3	22	7	25	11	20	10
\boldsymbol{x}_4	10	3	11	5	81	4
\boldsymbol{x}_{5}	16	6	20	8	20	10
\boldsymbol{x}_{6}	8	3	10	4	10	5

풀이

먼저, 6개의 점들의 순서를 각 클래스가 섞이도록 $\mathbf{x}_1(2,4)$, $\mathbf{x}_2(1,1)$, $\mathbf{x}_3(3,4)$, $\mathbf{x}_4(1,2)$, $\mathbf{x}_5(4,2)$, $\mathbf{x}_6(2,1)$ 와 같이 정하였다. 이 점들 사이의 내적을 표로 만들면 위와 같다. 이 표를 활용하여 수식 $\alpha_i(i=1,2,...,6)$ 를 변경시킨다. 여기서, \mathbf{x}_1 , \mathbf{x}_3 , \mathbf{x}_5 는 $y_i = 1$ 이고 나머지 점 들은 $y_i = -1$ 이다.

우선, 첫 단계로 모든 $\alpha_i(i = 1, 2, ..., 6)$ 를 영으로 설정한다.

첫 epoch에서 \boldsymbol{x}_i (i = 1, 2, ..., 6)을 순차적으로 입력하면

$$\boldsymbol{x}_{i}(i=1)$$
입력: 모든 α_{i} 는 영이므로 $y_{1}\sum_{j=1}^{n}\alpha_{j}y_{j}(\boldsymbol{x}_{j}^{T}\boldsymbol{x}_{1}+1)=0, \ \alpha_{1}:=\alpha_{1}+1=1$

$$\boldsymbol{x}_{i}(i=2) \, \mathfrak{P} = 1 \quad y_{2} \sum_{j=1}^{n} \alpha_{j} y_{j}(\boldsymbol{x}_{j}^{T} \boldsymbol{x}_{2}+1) = -1 \left[1 \times (6+1)\right] = -7, \ \alpha_{2} := \alpha_{2}+1 = 1$$

$$x_3$$
입력: $y_3 \sum_{j=1}^n \alpha_j y_j (x_j^T x_3 + 1) = 1 [1 × (22 + 1) - 1 × (7 + 1)] = 15, \ \alpha_3 := \alpha_3 = 0$

$$\boldsymbol{x}_4$$
입력: $y_4 \sum_{j=1}^{n} \alpha_j y_j (\boldsymbol{x}_j^T \boldsymbol{x}_4 + 1) = -7, \ \alpha_4 := \alpha_4 + 1 = 1$

$$\boldsymbol{x}_{5}$$
입력: $y_{5}\sum_{j=1}^{n} \alpha_{j}y_{j}(\boldsymbol{x}_{j}^{T}\boldsymbol{x}_{5}+1) = 1, \ \alpha_{5} := \alpha_{5} = 0$
 \boldsymbol{x}_{6} 입력: $y_{6}\sum_{j=1}^{n} \alpha_{j}y_{j}(\boldsymbol{x}_{j}^{T}\boldsymbol{x}_{6}+1) = 0, \ \alpha_{6} := \alpha_{6}+1 = 1$

두 번째 epoch에서 다시 $\boldsymbol{x}_i(i=1,2,...,6)$ 을 순차적으로 입력하면

**$$x_1$$
입력:** $y_1 \sum_{j=1}^n \alpha_j y_j (x_j^T x_1 + 1) = -6, \ \alpha_1 := \alpha_1 + 1 = 2$

x₂입력:
$$y_2 \sum_{j=1}^{n} \alpha_j y_j (\mathbf{x}_j^T \mathbf{x}_2 + 1) = -3, \ \alpha_2 := \alpha_2 + 1 = 2$$

$$x_3$$
입력: $y_3 \sum_{j=1}^{n} \alpha_j y_j (x_j^T x_3 + 1) = 7, \ \alpha_3 := \alpha_3 = 0$

$$x_4$$
입력: $y_4 \sum_{j=1}^n \alpha_j y_j (x_j^T x_4 + 1) = -3, \ \alpha_4 := \alpha_4 + 1 = 2$

x₅입력:
$$y_5 \sum_{j=1}^{n} \alpha_j y_j (\mathbf{x}_j^T \mathbf{x}_5 + 1) = -11, \ \alpha_5 := \alpha_5 + 1 = 1$$

그림에서 Support Vector는 사각 클래스의 $x_1(2,4), x_5(4,2)$ 와 원 클래스의 $x_4(1,2), x_6(2,1)$ 이다. 이 4개의 점들을 기준으로 x_1, x_5 에서는 +1의 값을 가지고 x_4, x_6 에서는 -1 의 값을 가지는 선형 구분자는 $g(x) = \frac{2}{3}(x_1 + x_2) - 3$ 이다. 이를 그림으로 그리면 아래와 같다.

7.4. Application of SVM[10] [Sub-Yeon Dong, et al. 2016]

Objective: Discriminate agreement and disagreement to the given self-relevant sentence in the single-trial level.

- Stimuli: 74 Korean sentences from the Minnesota Multiphasic Personality inventory-II (MMPI-II). Sentence contents are related to personal experience.
- Presentation: Considering the Subject-object-verb (SOV) typology of the Korean language, each sentence was separated into two parts: the verb (sentence ending) and the remainder of the sentence (contents).

(a) Positive ending	Contents	Sentence ending		
Stimulus sentence (Korean)	돈에 대해 걱정한 적이	있다		
<i>English translations in SOV form</i>	The experience of worrying over mon ey	Does exist		
<i>Original English MMPI-2</i> sentence	I worry a great deal over money.			
(b) Negative ending	Contents	Sentence ending		
(b) Negative ending Stimulus sentence (Korean)	Contents 기절한 적이	Sentence ending 없다		
(b) Negative ending <i>Stimulus sentence (Korean)</i> <i>English translations in SOV</i> <i>form</i>	The experience of having a fainting sp ell	Sentence ending 없다 Does not exist		

Experiment Procedure

Experiment Procedure

fMRI Experiment (19 subjects)

Image acquisition

3T MR scanner (Siemens Magnetom Vero, Germany)

- MR-compatible goggle (NordicNeuroLab Visual systmes, Norway)
- Gradient-echo echo-planar imaging (EPI) sequence (36 slices; thickness = 4 mm; no gap between slices; FOV = 220 × 220 mm; matrix = 64 × 64; TE = 28 ms; TR = 2.0 s; flip angle = 90 °; voxel size 3.4 mm × 3.4 mm × 4 mm)

Preprocessing

- (SPM8) Realign, coregister, segmentation, normalize, and smooth
- EEG Experiment (9 subjects)

Data acquisition

- BrainAmp system (Brain Products GmbH, Germany)
- 32-channel EEG cap (BrainCap)
- Eyetracker x120 (Tobii Technology, Sweden)

Preprocessing

- 60Hz notch filtering and 1Hz high-pass filtering
- Offline re-referencing to average (except EOG and ECG)
- Artifact Removal: EOG and ECG-related independent components
- Trial rejection: Reject trials whose absolute amplitude is over 70 μV

Feature Selection

Referring to the fMRI results, responses at frontal channels are considered.

Time-frequency Representations (TFRs)

Average TFR difference: Agree - Disagree

(a) Gamma 35-45Hz 350-550ms

(b) Beta2 20-26Hz 300-450 (c) Beta1 14-17Hz 800-1,000ms

(d) Alpha 9-12Hz 300-700n (e) Theta 5-7Hz 400-1,000ms

Channel Selection

Channel selection using the Fisher score

The Fisher score for the *i*th chann

$$F_{i} = \frac{\sum_{k=1}^{c} n_{k} (\mu_{k}^{i} - \mu^{i})^{2}}{\sum_{k=1}^{c} n_{k} (\sigma_{k}^{i})^{2}}$$

 n_k : sample size of k^{th} class μ_k^i : mean of k^{th} class in the i^{th} channel σ_k^i : std of k^{th} class in the i^{th} channel μ^i : mean of entire data in the i^{th} channel c: Total number of classes (here, c = 2)

	Theta		Alpha		Beta1		Beta2		Gamma	
Rank	Channe	Fisher								
	I	score								
1	C3	0.028	C3	0.028	P7	0.034	C3	0.030	F3	0.040
2	CP5	0.027	Fz	0.027	Т8	0.026	CP5	0.029	Т8	0.030
3	CP2	0.025	CP1	0.026	F4	0.022	FC1	0.026	FC5	0.027
4	P7	0.025	FC1	0.025	FC1	0.022	Fp2	0.025	FC2	0.024
5	P3	0.023	F4	0.025	F3	0.020	Fp1	0.025	CP5	0.023

Classification

- Subject-dependent classification with increasing the number of selected channels
- Average accuracy using 5-fold cross validation
- SVM classifier with linear and RBF kernels (LIBSVM)

Component	Classifier				
Component	Linear SVM	RBF SVM			
Theta	67.03% (30)	70.89% (2)			
Alpha	66.39% (30)	73.86% (4)			
Beta1	62.88% (30)	71.30% (4)			
Beta2	65.07% (30)	73.49% (3)			
Gamma	67.01% (20)	75.54% (5)			

