Machine Learning



Contents

©®NO ULk wWwnN =

AA—\—\@
wn = o

Introduction

K-Nearest Neighbor Algorithm
LDA(Linear Discriminant Analysis)
Perceptron

Feed-Forward Neural Networks
RNN(Recurrent Neural Networks)
SVM(Support Vector Machine)
Ensemble Learning
CNN(Convolutional Neural Network)
PCA(Principal Component Analysis)
ICA(Independent Component Analysis)
Clustering

GAN(Generative Adversarial Network)



7.1. Characteristics of Support Vector Machine

* Feed-forward Neural Network(Perceptron, MLP, RBF,..)
« Stochastic algorithm
 Generalizes well but need a lot of tuning
« Can be learned in incremental fashion
 To learn complex functions: use multiple hidden layers

* SVM

« Deterministic algorithm

* Nice Generalization with few parameters to tune

« Hard to learn — Quadratic programming techniques
 Using kernel tricks to learn very complex functions



7.2. Linear Separator and Perceptron

Some relevant properties of L = {wg + wlx = 0} X2
® ) For any two points X1,Xo € L, L={g(x) =0}
wl(x{ —x5) =0

A

so W 1s normal to L

. | lwol/[lw
Define w* = w/||w]|| to be the unit normal.
i . T X Xo
® ?)Foranypomnt Xo 1n L, w'Xg= —wq L
. . 1 . . . X
® 3) The signed distance of any point X to [ 1is \\ w
— 1 \ X w

X1
® 4) The geometric margin of example < x;,1; > with respect to hyperplane
detined by wqg, w 1s

L (wT'x + wo) yi € {—1,1}

Vi

A point 1s misclassified iff 1ts margin 1s <0.



Perceptron Learning Algorithm

Tries to minimize

D(w,wg) =— Y. y(w'x;+ wp)
miscazlgsified

sum of absolute distances of misclassified examples.
Gradient

Use stochastic gradient descent to minimize ; estimate the gradient
pased on a single training examples take a step downhill, repeat.
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Perceptron Learning Alg.: Dual Representation

Let a; be a count of the number of times that example 7 was mis-

classified.
If initial w =< 0,0,...,0 >, then final weights are sums of the training

examples.
T T
W = Z Q;YiX; WO = Z QY
1=1 =1
Then, our predictor is

n
h(x) = sign(w' x 4+ wg) = sign Y ay;(x{ x+ 1)
i=1
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7.3. Support Vector Machine

« Maximizing the margin leads to a particular choice of decision boundary.
The location of the boundary is determined by a subset of the data
points, known as support vectors, which are indicated by the circles.
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Support Vector Machine

« Support vector machines

 Names a whole family of algorithms. We'll start with the maximum
margin separator. The idea is to find the separator with the maximum
margin from all the data points. We'll see, later, a theoretical argument
that this might be a good idea. Seems a little less haphazard than a

perceptron.

Optimization problem :
. 1 ,
max C subject to ——y;(Wwlx;+wg) >C i=1,..,n
{wo,w} i
Since we have an extra degree of freedom (any
scaling of w specifies the equivalent separator),

we can set ||w|| to 1/C.



Support Vector Machine: Formulation

getting the problem

1
min =(||w||)? subject to yi(wlix; +wp) > 1 for i = 1,...,.N
{wQ,W}Q

\ {x|w!x ¥ wg = +1}

LY

{x|w!x + wp :5'-__—1}

L 4

\
o b1

(x|wlx ¥ wg = U}




Support Vector Machine: Formulation
getting the problem

min —(HWH)2 subject to y;(wlx; + wp) > 1
{wg,w}2

This is a quadratic optimization (well studied) problem, with a

unique solution computable in polynomial time. But looking a little
deeper will reveal some important properties.

Lagrangian formulation of constrained optimization :

min maxL(wg, w,a) = —||W|\2 S ailyi(w! x; + wo) — 1]

{TLD w} a>0 i—1 \
\ positive if

Lagrange .
- constraint I1s
multiplier o
P satisfied



Support Vector Machine: Kuhn-Tucker Theorem

Kuhn-Tucker theorem :

min maxL(wg,w,a) = max min L(wg, W, o)
{wo,w} @ {wo,w}

Lagrange showed that, for L(wqg,w,«a) convex in {wg,w}, a nec-
essary and sufficient condition for {wgj, w*} to be the solution of

min L(wg, w, «) is for

OL L
(wO:Wa Od) — 0 and o (WO:Waa) —0
ow awo
In our case,
OL(wg, W, ) n
= W — Z Oeiyz'X?;ZO

oW =1

OL(wg, W, )
dwq

=> oy; =0
i



Support Vector Machine: Lagrange Formulation

Substitute these to get L dependent only on c.

Lla) = Z o — — T Xj ozjozkyjyk(x X}, )

j 1 k=1
Maximize L(«) subject to a > 0 and > ; o;y; = 0.

Note that w = > 1", oyy;X; shows weight vector can be represented
as weighted sum of data, as in dual perceptron.




Support Vector Machine: Solution

Finding optimal «; iIs computationally tractable quadratic program-
ming problem.

An optimal solution must satisfy

o [y;(w*T'x; + wp) — 1] = 0

SO, «; are non-zero for points x; with margin=1; 0 for all other
points. Points with margin=1 are called support vectors.
Finding wqp: let x; be a support vector. Then

yi(wlx; +wg) =1

So, wo = y; — W' X



Support Vector Machines

« What if the problem is not linearly separable?

* Introduce slack variables

+ Need to minimize:

— |2 m
L(ujg):H j| +({Z§}

» Subject to:

y.(WeX, +b)2 lfmr all (X,,y,)in D



Support Vector Machines

* What if decision boundary is not linear?

12
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Data projected to R™~ 2 (nonseparable)
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Data in R*3 (separable)
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7.4. Application of SVM e bong e a0 2m

Objective: Discriminate agreement and disagreement to the given self-
relevant sentence in the single-trial level.

Stimuli: 74 Korean sentences from the Minnesota Multiphasic
Personality inventory-Il (MMPI-11). Sentence contents are related to

Presentation: Considering the Subject-object-verb (SOV) typology of
the Korean language, each sentence was separated into two parts: the

verb and the remainder of the sentence
(a) Positive ending Contents Sentence ending
Stimulus sentence (Korean) ol ti3l 2473 4ol A
English translations in SOV The experience of worrying over mon Does exist
form ey
Original English MMPI-2

| worry a great deal over money.
sentence
(b) Negative ending Contents Sentence ending
Stimulus sentence (Korean) 7143k A o] At
ngn/fh translations in SOV The experience of:”avmg a fainting sp Does not exist

Original English MMPI-2

| have never had a fainting spell.
sentence




Experiment Design

Objective: Discriminate agreement and disagreement to the given self-

relevant sentence in the single-trial level.

The relationship between “yes/no"” and "agree/disagree” in Korean.

of) 7tFa0t ZCr=2h H0| RUACH/ \AC.

The experience of having quarrels with members of my family does/does

not exist.
User response
Example sentence : : User without experienc
User with experience o
The experience of having quarrels Does exist (”ULCH Yes No
with members of my family
(&1 ZCHESH HOJ) Does not exist (81CH No Yes
Categorization for the classification Agree Disagree




Experiment Procedure

Experiment Design

fMRI Experiment

EEG Experiment

Related brain regions

Feature Selection

Single-trial Classification

Agreement or
Disagreement?




Experiment Procedure

fMRI Experiment (19 subjects).

0s

Sentence
4s Ending

Press a button
(Yes or No)

—» 219 Trjal

Time
(total 17 min 16 s)

Image acquisition

3T MR scanner (Siemens Magnetom Vero, Germany)
MR-compatible goggle (NordicNeuroLab Visual systmes,
Norway)

Gradient-echo echo-planar imaging (EPI) sequence (36
slices; thickness = 4 mm; no gap between slices; FOV =
220 x 220 mm; matrix = 64 x 64; TE = 28 ms; TR = 2.0 s;
flip angle = 90 °; voxel size 3.4 mm x 3.4 mm x 4 mm)

Preprocessing
(SPM8) Realign, coregister, segmentation, normalize, and!
smooth

EEG Experiment (9 subjects)

1¢t Trial

Contents

Sentence
4s Ending

Speak an answer
(Yes or No)

Time
(total 17 min 16 s)

Data acquisition

BrainAmp system (Brain Products GmbH, Germany)
32-channel EEG cap (BrainCap)

Eyetracker x120 (Tobii Technology, Sweden)

Preprocessing

60Hz notch filtering and 1Hz high-pass filtering

Offline re-referencing to average (except EOG and ECGY!
Artifact Removal: EOG and ECG-related independent
components

Trial rejection: Reject trials whose absolute amplitude is
over 70 pVv



fMRI Data Analysis

= Activation during reading ‘contents’

Contents

Sentence
4s Ending

Press a button
(Yes or No)

8s

274 Trial

Time
(total 17 min 16 s)

Activated regions and their functions
I - Agree>disagree: Dorsolateral prefrontal cortex
(BA 9), anterior cingulate (BA32)
-> decision-making

-> self-descriptive trait judgment, and

empathic judgments

By — - Disagree>agree: Left fusiform gyrus
-> written word rec8g#ition
-> unfamiliar'§timuli

. . Number Peak Peak MNI Coordinate
Peak coordinate region . .
of voxels  intensity X y z
(A) Agree > Disagree
L Superior frontal gyrus 43 4.2654 -38 34 36
L Anterior cingulate 105 4.1851 -14 48 -6
R Anterior cingulate 30 3.8177 4 40 8
R Cingulate gyrus 53 3.7786 12 4 30
R Paracentral lobule 50 3.6175 8 -38 76
R Supplementary motor area 36 3.5777 2 -20 68
L Postcentral gyrus 35 3.3399 -32 -46 70
R Paracentral lobule 24 3.2484 12 -36 52
(B) Disagree > Agree
L Fusiform gyrus 28 4.414 -36 -50 -18

Notes. Contrasts were thresholded at an uncorrected p-value 0.005,

corresponding to a t-statistic of 2.8784 and cluster size of 20 voxels. L =

left. R = right



E EG D t A | 1~ - Referring to the fMRI results, responses at frontal channels are
a a n a yS I S considered.

= EEG patterns during reading Conteﬂtﬁscﬂlatory responses in sentence processing
Grammatical or semant|c violation affects
EEG oscillatory responses ->

1¢t Trial

03 Contents disagreement
a3 Ending; Spesk an answer - Gamma: increase at frontocentral
(Yes or No) . . .
8s - Theta: increase at frontal midline and
0% s 2% temporo-parietal
123 +
14\
Time
(total 17 min 16 s)
= Time-frequency Representations (TFRs)
F3:Agree F3:Disagree i F3:Agree-Disagree
Event-related potential 0 b
5 60 i 200
AN . _w ] .
o S £ S

E Morlet- g ¥ z Eg 0
g Wavelet 2 30 ! 3 E 3 100

< |F3 . . , , 200 £ £ e l
32 0 0.2 0.4 0.6 0.8 1 2 ! 200

time [sec] 10 :
% | i %
change 02 0 02040608 02 0 02040608 E 02 0 02040608 e
Time |s. Time |sl : Time ‘s'




Feature Selection

Frequency (Hz)

Average TFR difference: Agree - Disagree

-0.2

Time-frequency Representations (TFRs)

0 0.2 0.40.60.8
Time (s)

Frequency (Hz)

-0.2 0 0.20.40.60.8

Time (s)
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Referring to the fMRI results, responses at frontal channels are

considered.
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Change

(@) Gamma 35-45Hz 350-550ms

&9;

Select 5 feature
candidates

(@) gamma 35-45Hz 350-
550ms

(b) beta2 20-26Hz 300-
450ms

(c) betal 14-17Hz 800-
1,000ms

(d) alpha 9-12Hz 300-700ms
(e) theta 5-7Hz 400-1,000ms

(b) Beta2 20-26Hz 300-450 (c) Betal 14-17Hz 800-1,000ms




Channel Selection

Channel selection using the Fisher score

4 ™
(a) Compute Fisher score for each channel F '

Class 1 Class 2 l ' 2
(agree) (disagree) C L
n samples from H H
PR i*" channel : ; >
. it" channe ; : _Compute
’ Fisher score
L]
|

ith channel: |f

My x1 ny x1

b (g bz =)
Trial Trial Trial

30xn Feature matrix Data Vectors for each class
\_ from i** channel J

[19]
The Fisher score for the it" channel:

. ng: sample size of k™ class
C L I i f k™ class in the ith channel
n ( _ ) Hi: Mmean o
— Zk_l k\Mk — K oi: std of k™ class in the i™® channel
ZC n (O.i)z ut: mean of entire data in the i™® channel
k=1""k k c¢: Total number of classes (here, ¢ = 2)

[

| Theta | Alpha | Betal | Beta2 | Gamma

Rank Channe  Fisher | Channe  Fisher | Channe Fisher | Channe  Fisher | Channe  Fisher
| score | score | score | score | score

1 | c3 0028 | C3 0028 | P7 0034 | (3 0.030 | F3 0.040
2 | cps 0027 |  Fz 0027 | T8 0.026 |  CP5 0029 | T8 0.030
3 | cp2 0.025 | CP1 0.026 | F4 0022 | FC1 0.026 | FC5 0.027
4 | p7 0.025 | FC1 0.025 | FC1 0.022 |  Fp2 0.025 | FC2 0.024
5 | p3 0.023 | F4 0.025 | F3 0.020 |  Fp1 0.025 | CP5 0.023




Classification

Subject-dependent classification with increasing the number of selected

channels

Average accuracy using 5-fold cross validation
SVM classifier with linear and RBF kernels (LIBSVM)

(a) Linear SVM

e} «©
[=] o

~
o

-
------

Average Accuracy (%)
(o]
O

Component Classifier
Linear SVM RBF SVM
Theta 67.03% (30) 70.89% (2)
Alpha 66.39% (30) 73.86% (4)
Beta 62.88% (30) 71.30% (4)
Beta2 65.07% (30) 73.49% (3)
Gamma 67.01% (20) 75.54% (5)

(b) RBF SVM
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