Machine Learning

Contents

- 1. Introduction
- 2. K-Nearest Neighbor Algorithm
- 3. LDA(Linear Discriminant Analysis)
- 4. Perceptron
- 5. Feed-Forward Neural Networks
- 6. RNN(Recurrent Neural Networks)
- 7. SVM(Support Vector Machine)
- 8. Ensemble Learning
- 9. CNN(Convolutional Neural Network)
- 10. PCA(Principal Component Analysis)
- 11. ICA(Independent Component Analysis)
- 12. Clustering
- 13. GAN(Generative Adversarial Network)

7.1. Characteristics of Support Vector Machine

• Feed-forward Neural Network(Perceptron, MLP, RBF,..)

- Stochastic algorithm
- Generalizes well but need a lot of tuning
- Can be learned in incremental fashion
- To learn complex functions: use multiple hidden layers

• SVM

- Deterministic algorithm
- Nice Generalization with few parameters to tune
- Hard to learn Quadratic programming techniques
- Using kernel tricks to learn very complex functions

7.2. Linear Separator and Perceptron

 \boldsymbol{x}_0

X

|g(x)| / ||w||

 x_1

$$y_i \cdot \frac{1}{||\mathbf{w}||} (\mathbf{w}^T \mathbf{x} + w_0) \qquad \qquad y_i \in \{-1, 1\}$$

A point is misclassified iff its margin is <0.

Perceptron Learning Algorithm

Tries to minimize

$$D(\mathbf{w}, w_0) = -\sum_{\substack{i \in \\ miscalssified}} y_i(\mathbf{w}^T \mathbf{x}_i + w_0)$$

sum of absolute distances of misclassified examples. Gradient

$$\frac{\partial D(\mathbf{w}, w_0)}{\partial \mathbf{w}} = -\sum_{i \in M} y_i \mathbf{x}_i \qquad \frac{\partial D(\mathbf{w}, w_0)}{\partial w_0} = -\sum_{i \in M} y_i$$

Use stochastic gradient descent to minimize ; estimate the gradient based on a single training examples take a step downhill, repeat.

퍼셉트론	알고리즘	
- 이입력과	목표 값의 쌍으로 구성된 학습패턴 $< oldsymbol{x}_i, y_i >$ 를 저장한다.	
① <mark>가</mark> 중치	↓ w 와 w₀를 임의의 값으로 초기화 시킨다.	
② n개의	학습패턴에 대하여 가중치를 다음과 같이 변경시킨다.	
	If $y_i(\boldsymbol{w}^T \boldsymbol{x}_{i+} w_0) \leq 0$ then $\begin{cases} \boldsymbol{w} := \boldsymbol{w} + y_i \boldsymbol{x}_i \\ w_0 := w_0 + y_i \end{cases}$	(7.2.9)
③ 오인스	시된 학습패턴이 있으면 과정 ②를 다시 수행한다.	· ·
④ 새로운	은 입력 \boldsymbol{x} 가 주어지면 $g(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} + w_0$ 의 부호로 예측한다.	

Perceptron Learning Alg.: Dual Representation

Let α_i be a count of the number of times that example i was misclassified.

If initial $\omega = < 0, 0, ..., 0 >$, then final weights are sums of the training examples.

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i \qquad w_0 = \sum_{i=1}^{n} \alpha_i y_i$$

Then, our predictor is

$$h(\mathbf{x}) = sign(\mathbf{w}^T\mathbf{x} + w_0) = sign\sum_{i=1}^n \alpha_i y_i(\mathbf{x}_i^T\mathbf{x} + 1)$$

•	
.[퍼셉트론 알고리즘의 이중적 표현
	\bigcirc 입력과 목표값의 쌍으로 구성된 학습패턴 < $oldsymbol{x}_i, y_i$ > 를 저장한다.
	① α 는 영으로 초기화 시킨다.
	② 학습 패턴 n개에 대하여 가중치를 다음과 같이 변경시킨다.
•	n
•	If $\sum_{j=1} y_i \alpha_j y_j (x_j^2 x_{i+1}) \le 0$ then $\alpha_i := \alpha_i + 1$ (7.2.13)
	$\boldsymbol{w} = \sum_{i=1}^{n} \alpha_i y_i \boldsymbol{x}_i$ and $w_0 = \sum_{i=1}^{n} \alpha_i y_i$
·	② ㅇ이시디 하스페더이 이ㅇ며 코저 @르 다시 스채하다
·	③ 오한금편 위함페인의 있으면 편성 ②을 내서 구행한다.
·	④ 새로운 입력 x가 주어지면 h(x)로 예측한다.

7.3. Support Vector Machine

• Maximizing the margin leads to a particular choice of decision boundary. The location of the boundary is determined by a subset of the data points, known as support vectors, which are indicated by the circles.

Support Vector Machine

- Support vector machines
 - Names a whole family of algorithms. We'll start with the **maximum margin separator**. The idea is to find the separator with the maximum margin from all the data points. We'll see, later, a theoretical argument that this might be a good idea. Seems a little less haphazard than a perceptron.

Optimization problem :

$$\max_{\{w_0,\mathbf{w}\}} C \text{ subject to } \frac{1}{||\mathbf{w}||} y_i(\mathbf{w}^T \mathbf{x}_i + w_0) \ge C \quad i = 1, ..., n$$

Since we have an extra degree of freedom (any scaling of w specifies the equivalent separator), we can set ||w|| to 1/C.

Support Vector Machine: Formulation

getting the problem

$$\min_{\{w_0,\mathbf{w}\}}rac{1}{2}(||\mathbf{w}||)^2$$
 subject to $y_i(\mathbf{w}^T\mathbf{x}_i+w_0)\geq 1$ for $i=1,...,N$

Support Vector Machine: Formulation

getting the problem

$$\min_{\{w_0,\mathbf{w}\}} \frac{1}{2} (||\mathbf{w}||)^2 \text{ subject to } y_i(\mathbf{w}^T \mathbf{x}_i + w_0) \ge 1$$

This is a quadratic optimization (well studied) problem, with a unique solution computable in polynomial time. But looking a little deeper will reveal some important properties.

Lagrangian formulation of constrained optimization :

$$\min_{\{w_0, \mathbf{w}\}} \max_{\alpha \ge 0} L(w_0, \mathbf{w}, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^n \alpha_i [y_i(\mathbf{w}^T \mathbf{x}_i + w_0) - 1]$$

$$\lim_{k \ge 0} Lagrange$$

Support Vector Machine: Kuhn-Tucker Theorem

Kuhn-Tucker theorem :

$$\min_{\{w_0,\mathbf{w}\}} \max_{\alpha} L(w_0,\mathbf{w},\alpha) = \max_{\alpha} \min_{\{w_0,\mathbf{w}\}} L(w_0,\mathbf{w},\alpha)$$

Lagrange showed that, for $L(w_0, \mathbf{w}, \alpha)$ convex in $\{w_0, \mathbf{w}\}$, a necessary and sufficient condition for $\{w_0^*, \mathbf{w}^*\}$ to be the solution of $\min L(w_0, \mathbf{w}, \alpha)$ is for

$$\frac{\partial L(w_0, \mathbf{w}, \alpha)}{\partial \mathbf{w}} = \mathbf{0} \text{ and } \frac{\partial L(w_0, \mathbf{w}, \alpha)}{\partial w_0} = \mathbf{0}$$

In our case,

$$\frac{\partial L(w_0, \mathbf{w}, \alpha)}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i = \mathbf{0}$$

$$\frac{\partial L(w_0, \mathbf{w}, \alpha)}{\partial w_0} = \sum_i \alpha_i y_i = 0$$

Support Vector Machine: Lagrange Formulation

Substitute these to get L dependent only on α .

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_j \alpha_k y_j y_k(\mathbf{x}_j^T \mathbf{x}_k)$$

Maximize $L(\alpha)$ subject to $\alpha \ge 0$ and $\sum_i \alpha_i y_i = 0$.

Note that $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$ shows weight vector can be represented as weighted sum of data, as in dual perceptron.

Support Vector Machine: Solution

Finding optimal α_i is computationally tractable quadratic programming problem.

An optimal solution must satisfy

$$\alpha_i^*[y_i(\mathbf{w}^{*T}\mathbf{x}_i + w_0) - 1] = 0$$

So, α_i are non-zero for points \mathbf{x}_i with margin=1; 0 for all other points. Points with margin=1 are called <u>support vectors</u>. Finding w_0 : let \mathbf{x}_i be a support vector. Then

$$y_i(\mathbf{w}^T \mathbf{x}_i + w_0) = 1$$

So,
$$w_0 = y_i - \mathbf{w}^T \mathbf{x}_i$$

Support Vector Machines

- What if the problem is not linearly separable?
- Introduce slack variables
 - Need to minimize:

$$L(w,\xi) = \frac{\|\vec{w}\|^2}{2} + C\left(\sum_{i=1}^{m} \xi_i\right)$$

• Subject to:

$$y_i(\vec{w} \bullet \vec{x}_i + b) \ge 1 - \xi_i$$
, for all (\vec{x}_i, y_i) in D

Support Vector Machines

• What if decision boundary is not linear?

A nonseparable dataset in a two-dimensional space R², and the same dataset mapped onto threedimensions with the third dimension being x²+y² (source: <u>http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html</u>)

The decision boundary is shown in green, first in the three-dimensional space (left), then back in the twodimensional space (right). Same source as previous image. 예제 7.3-1

그림과 같이 2차원 공간상에 두 개의 클래스에 해당하는 점집합이 주어졌다. 사각형 클래스 는 $y_i = 1$, 원형 클래스는 $y_i = -1$ 이라고 두고서 퍼셉트론의 이중적 표현에 의한 학습을 두 epoch 동안 반복하여 보아라. 그리고, Support Vector의 지점을 구하고, 이를 근거로 SVM 에 의한 구분자를 구하여라.

내적	\boldsymbol{x}_1	\boldsymbol{x}_2	x ₃	\boldsymbol{x}_4	\boldsymbol{x}_{5}	\boldsymbol{x}_6
\boldsymbol{x}_1	20	6	22	10	16	8
\boldsymbol{x}_2	6	2	7	3	6	3
\boldsymbol{x}_3	22	7	25	11	20	10
\boldsymbol{x}_4	10	3	11	5	81	4
\boldsymbol{x}_{5}	16	6	20	8	20	10
\boldsymbol{x}_{6}	8	3	10	4	10	5

7.4. Application of SVM [Sub-Yeon Dong, et al. 2016]

Objective: Discriminate agreement and disagreement to the given self-relevant sentence in the single-trial level.

- Stimuli: 74 Korean sentences from the Minnesota Multiphasic Personality inventory-II (MMPI-II). Sentence contents are related to personal experience.
- Presentation: Considering the Subject-object-verb (SOV) typology of the Korean language, each sentence was separated into two parts: the verb (sentence ending) and the remainder of the sentence (contents).

(a) Positive ending	Contents	Sentence ending	
Stimulus sentence (Korean)	돈에 대해 걱정한 적이	있다	
<i>English translations in SOV form</i>	The experience of worrying over mon ey	Does exist	
Original English MMPI-2 sentence	l worry a great deal o	over money.	
(b) Negative ending	Contents	Sentence ending	
(,		sentence enanig	
Stimulus sentence (Korean)	기절한 적이	없다	
<i>Stimulus sentence (Korean)</i> <i>English translations in SOV</i> <i>form</i>	기절한 적이 The experience of having a fainting sp ell	없다 Does not exist	

Experiment Design

Objective: Discriminate agreement and disagreement to the given self-relevant sentence in the single-trial level.

• The relationship between "yes/no" and "agree/disagree" in Korean.

예) 가족과 말다툼한 적이 있다/없다.

The experience of having quarrels with members of my family does/does not exist.

F		User response			
Example senter	ice	User with experience	User without experienc e		
The experience of having quarrels	Does exist (있다)	Yes	No		
(가족과 말다툼한 적이)	Does not exist (없다)	No	Yes		
Categorization for the c	lassification	Agree	Disagree		

Experiment Procedure

Experiment Procedure

fMRI Experiment (19 subjects)

Image acquisition

3T MR scanner (Siemens Magnetom Vero, Germany)

- MR-compatible goggle (NordicNeuroLab Visual systmes, Norway)
- Gradient-echo echo-planar imaging (EPI) sequence (36 slices; thickness = 4 mm; no gap between slices; FOV = 220 × 220 mm; matrix = 64 × 64; TE = 28 ms; TR = 2.0 s; flip angle = 90 °; voxel size 3.4 mm × 3.4 mm × 4 mm)

Preprocessing

- (SPM8) Realign, coregister, segmentation, normalize, and smooth
- EEG Experiment (9 subjects)

Data acquisition

- BrainAmp system (Brain Products GmbH, Germany)
- 32-channel EEG cap (BrainCap)
- Eyetracker x120 (Tobii Technology, Sweden)

Preprocessing

- 60Hz notch filtering and 1Hz high-pass filtering
- Offline re-referencing to average (except EOG and ECG)
- Artifact Removal: EOG and ECG-related independent components
- Trial rejection: Reject trials whose absolute amplitude is over 70 μV

fMRI Data Analysis

Activation during reading 'contents'

Activated regions and their functions

- Agree>disagree: Dorsolateral prefrontal cortex (BA 9), anterior cingulate (BA32)
 - -> decision-making
 - -> self-descriptive trait judgment, and empathic judgments

...

- Disagree>agree: Left fusiform gyrus
 - -> written word recognition
 - -> unfamiliar^[18]imuli

Deck and Provention	Number Peak		Peak MNI Coordinate			
Peak coordinate region	of voxels	intensity	X	У	Z	
(A) A gree > Disagree						
L Superior frontal gyrus	43	4.2654	-38	34	36	
L Anterior cingulate	105	4.1851	-14	48	-6	
R Anterior cingulate	30	3.8177	4	40	8	
R Cingulate gyrus	53	3.7786	12	4	30	
R Paracentral lobule	50	3.6175	8	-38	76	
R Supplementary motor area	36	3.5777	2	-20	68	
L Postcentral gyrus	35	3.3399	-32	-46	70	
R Paracentral lobule	24	3.2484	12	-36	52	
(B) Disagree > Agree						
L Fusiform gyrus	28	4.414	-36	-50	-18	

.. .

Notes. Contrasts were thresholded at an uncorrected p-value 0.005, corresponding to a t-statistic of 2.8784 and cluster size of 20 voxels. L = left. R = right

EEG Data Analysis - Referring to the fMRI results, responses at frontal channels are considered.

EEG patterns during reading 'contents' scillatory responses in sentence processing

- Grammatical or semantic violation affects EEG oscillatory responses. \rightarrow disagreement
- Gamma: increase at frontocentral
- Theta: increase at frontal midline and temporo-parietal

Time-frequency Representations (TFRs)

Feature Selection

Referring to the fMRI results, responses at frontal channels are considered.

Time-frequency Representations (TFRs)

Average TFR difference: Agree - Disagree

(a) Gamma 35-45Hz 350-550ms

(b) Beta2 20-26Hz 300-450 (c) Beta1 14-17Hz 800-1,000ms

(d) Alpha 9-12Hz 300-700n (e) Theta 5-7Hz 400-1,000ms

Channel Selection

Channel selection using the Fisher score

score for the i th char	nnel:	$\sum_{k=1}^{c} n_k (\mu_k^i - \mu^i)^2$
	$F_i =$	$\frac{\sum_{k=1}^{c} \sum_{k=1}^{c} \left(\sigma_{k}^{i}\right)^{2}}{\sum_{k=1}^{c} \left(\sigma_{k}^{i}\right)^{2}}$
		$\Delta_{k=1} n_k (O_k)$

 n_k : sample size of k^{th} class μ_k^i : mean of k^{th} class in the i^{th} channel σ_k^i : std of k^{th} class in the i^{th} channel μ^i : mean of entire data in the i^{th} channel c: Total number of classes (here, c = 2)

	Theta		Alpha		Beta1		Beta2		Gamma	
Rank	Channe	Fisher								
		score	I	score	I	score	I	score		score
1	C3	0.028	C3	0.028	P7	0.034	C3	0.030	F3	0.040
2	CP5	0.027	Fz	0.027	Т8	0.026	CP5	0.029	Т8	0.030
3	CP2	0.025	CP1	0.026	F4	0.022	FC1	0.026	FC5	0.027
4	P7	0.025	FC1	0.025	FC1	0.022	Fp2	0.025	FC2	0.024
5	P3	0.023	F4	0.025	F3	0.020	Fp1	0.025	CP5	0.023

Classification

- Subject-dependent classification with increasing the number of selected channels
- Average accuracy using 5-fold cross validation
- SVM classifier with linear and RBF kernels (LIBSVM)

Component	Classifier					
Component	Linear SVM	RBF SVM				
Theta	67.03% (30)	70.89% (2)				
Alpha	66.39% (30)	73.86% (4)				
Beta1	62.88% (30)	71.30% (4)				
Beta2	65.07% (30)	73.49% (3)				
Gamma	67.01% (20)	75.54% (5)				

