
Machine Learning



Contents

1. Introduction

2. K-Nearest Neighbor Algorithm

3. LDA(Linear Discriminant Analysis)

4. Perceptron

5. Feed-Forward Neural Networks

6. RNN(Recurrent Neural Networks)

7. SVM(Support Vector Machine)

8. Ensemble Learning

9. CNN(Convolutional Neural Network)

10. PCA(Principal Component Analysis)

11. ICA(Independent Component Analysis)

12. Clustering

13. GAN(Generative Adversarial Network) 



5.1. Multi-Layer Perceptron (MLP)

• Feed-forward structure: inputs from the previous layer and outputs to 
the next layer

• Output layer: sigmoid activation function for classification problems and 
linear activation function for regression problems

• Figure: two-layer network (two layer of weights)



Architecture of MLP (N-H-M): Forward Propagation

0

1

0

1

21

21

21

ˆ    where),ˆ(

ˆ    where

)2/ˆtanh()ˆ(

Output(?)Input

],,,[ :NodesOutput 

],,,[:NodesHidden 

],,,[:NodesInput 

k

H

j

jkjkkk

j

N

i

ijij

jjj

T

M

T

H

T

N

vhvyyfy

wxwh

hhfh

yyy

hhh

xxx





























y

h

x



5.2. Representational Power of MLP
• MLP with two layers can represent arbitrary function 

• Each hidden unit represents a soft threshold function in the input space 
• Combine two opposite-facing threshold functions to make a ridge 
• Combine two perpendicular ridges to make a bump 
• Add bumps of various sizes and locations to fit any surface 

• Universal approximator
• Given a sufficiently large number of hidden units , a two layer (linear

output) network can approximate any continuous function on a
compact input domain to arbitrary accuracy.



5.3. Training of MLP : Error Back-Propagation Algorithm

1 2

1 2

1 2

2

1

( ) ( )

Input Pattern: [ , , , ]

Output Vector: [ , , , ]

Desired Output Vector: [ , , , ]

Mean-Squared Error Function:

1
    ( ) ( )

2

( ) (
   where 

T

N

T

M

T

M

M

m k k

k

out outm m
kj k j k

kj

x x x

y y y

t t t

E t y

E E
v h

v
  











   

x

y

t

x

x

-

∂ ∂
- -

∂

∑

( ) ( ) ( )

1

)
ˆ( ) '( )

ˆ

( ) ( ) ˆ   where '( )
ˆ

k k k

k

M
hid hid outm m

ji j i j j kj k

kji j

t y f y
y

E E
w x f h v

w h
   





    

x

x x

-
∂

∂ ∂
- -

∂ ∂
∑





𝑥0 𝑥1 𝑥𝑖 𝑥𝑁

ℎ𝑗

𝑦𝑘𝑦1 𝑦𝑀

𝛿𝑘

𝑣𝑘𝑗𝑣1𝑗
𝑣𝑀𝑗

𝛿1 𝛿𝑀



𝑘=1

𝑀

𝑣𝑘𝑗𝛿𝑘

𝑓(. )

𝑓′(. ) 

𝑘=1

𝑀

𝑣𝑘𝑗𝛿𝑘



5.4. Incorrect Saturation of Output Nodes

Correct Saturation
𝑦𝑘 ≈ 𝑡𝑘 , 𝛿𝑘 ≈ 0

Incorrect Saturation
If 𝑦𝑘 ≈ ±1 and 𝑡𝑘 = ∓1 , 𝛿𝑘 ≈ 0 although 𝑡𝑘 − 𝑦𝑘 ≈ 2

Incorrect Saturation of Output Nodes → Very Slow Convergence of Learning  due to 𝛿𝑘 ≈ 0



Training of MLP : Error Back-Propagation Algorithm

           

2

1

1

conv. MSE  

ˆ( ) ( ) '( )

. Incorrect Saturation Problem

1
 ( ) ( )

2

Cross-Entropy Error   

( ) ( )

. Overspecialization Problem

1 ln 1 1 ln 1

n-th o

out

k k k k

M

m k k

k

out

k k k

M

CE k k k k

k

t y f y

E t y

t y

E t y t y









 





 



     



x

x

x

x x x

-

-

-

- - -

∑

∑

1

1

1

2
1

rder Extension of CE   

( )
( ) 

2

( )

2 (1 )(1 )

n n
out k k k
k n

n nM
k k k

nCE kn
k k k

t t y

t t y
E dy

y y














 


x

-

-

-

-
∑∫ 1 when )( ofPlot )( k

pout

k tx



Error Back-Propagation Algorithm









5.5. Remarks on Training
• Convergence(?)… may oscillate or reach a local minima.

• Many epochs (thousands) may be needed for adequate training

• Termination criteria:

– Fixed number of training epochs

– Threshold on error of training samples

– Increasing of error on a validation samples

• For better performance, run several trials starting from different initial random weights 

– Take the result with the best training or validation performance.

– Build a committee of networks (ensemble technique)…Chapter 8



Initialization of Weights

• Initialization of weights such that nodes are in the “linear” regions 
• To avoid the premature saturation problem

• Keep all weights near zero, so that all sigmoid units are in their linear regions.
Otherwise nodes can be initialized into flat regions of the sigmoid causing for very
small gradients.⇒ Premature Saturation Problem

• Break symmetry
– Each hidden node should have different input weights so that the hidden nodes 
move in different directions.



Online, Batch and Learning with Momentum

• Online: Take a gradient descent step with each input

• Batch:  Sum the gradient for each example i. Then take a gradient descent step

• Momentum factor: Make the t+1-th update dependent on the t-th update

- to keep weight moving in the same direction and improves convergence



Overtraining Prevention

• Too many epochs → over-train the network

• Use a validation set to test accuracy in some intervals of epochs

• Stop the training when the performance on the validation set decreases

• 10-fold cross-validation

Error

Epochs

Training Set

Validation Set



Over-fitting Prevention

• Too few hidden units prevent the system from adequately fitting the 
data and learning the concept.

• Too many hidden units leads to over-fitting.

• Trial and error 

• Another approach to preventing over-fitting is weight decay

Error

#Hidden Nodes

Training Set

Validation Set



5.6. Learning Time Series Data

• Time-delay neural networks (TDNN) 

𝑥0 = 1 𝑥𝑡𝑥𝑡−1𝑥𝑡−𝑇

𝒉

𝑦



5.7. Deep Neural Networks

𝒙

𝒉(1)

𝒉(𝐿)

𝒉(2)

𝑦𝑘



𝒙

𝒉(1)

𝒉(𝐿)

𝒉(2)

𝑦𝑘











5.8. Radial Basis Function Networks 

• Locally-tuned units: 

𝒙

𝑦𝑘

𝒉

𝒎𝑗 𝑠𝑗



Local vs. Distributed Representation 



Training RBF Network

• Hybrid learning 

• First layer centers and spreads (Unsupervised k-means) 

• Second layer weights (Supervised gradient descent) 

• Fully supervised 

•Similar to backpropagation in MLP, gradient descent for all parameters 



RBF Network: Fully Supervised Method

• Similar to backpropagation in MLP 



RBF Network: Fully Supervised Method

• Similar to backpropagation in MLP 


