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5.1. Multi-Layer Perceptron (MLP)

• Each layer receives its inputs from the previous layer and forwards its 
outputs to the next – feed forward structure

• Output layer: sigmoid activation function for classification, linear 
activation function for regression problem

• Referred to as a two-layer network (two layer of weights)



Architecture of MLP (N-H-M): Forward Propagation
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5.2. Representational Power of MLP
• MLP with 3 layers can represent arbitrary function 

• Each hidden unit represents a soft threshold function in the input space 
• Combine two opposite-facing threshold functions to make a ridge 
• Combine two perpendicular ridges to make a bump 
• Add bumps of various sizes and locations to fit any surface 

• Universal approximator
• A two layer (linear output) network can approximate any continuous 

function on a compact input domain to arbitrary accuracy given a 
sufficiently large number of hidden units



5.3. Training of MLP : Error Back-Propagation Algorithm
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5.4. Incorrect Saturation of Output Nodes

Correct Saturation
𝑦𝑘 ≈ 𝑡𝑘 , 𝛿𝑘 ≈ 0

Incorrect Saturation
If 𝑦𝑘 ≈ ±1 and 𝑡𝑘 = ∓1 , 𝛿𝑘 ≈ 0 although 𝑡𝑘 − 𝑦𝑘 ≈ 2

Incorrect Saturation of Output Nodes → Very Slow Convergence of Learning  due to 𝛿𝑘 ≈ 0



Training of MLP : Error Back-Propagation Algorithm
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Error Back-Propagation Algorithm





Example
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5.5. Remarks on Training
• No guarantee of convergence, may oscillate or reach a local minima.

• However, in practice many large networks can be adequately trained on large amounts 
of data for realistic problems, e.g.

– Driving a car

– Recognizing handwritten zip codes

– Play world championship level Backgammon

• Many epochs (thousands) may be needed for adequate training, large data sets may 
require hours or days of CPU time.

• Termination criteria can be:

– Fixed number of epochs

– Threshold on training set error

– Increased error on a validation set

• To avoid local minima problems, can run several trials starting from different initial 
random weights and:

– Take the result with the best training or validation performance.

– Build a committee of networks that vote during testing, possibly weighting vote by 
training or validation accuracy



Notes on Proper Initialization
• Start in the “linear” regions

• keep all weights near zero, so that all sigmoid units are in their linear regions. 
Otherwise nodes can be initialized into flat regions of the sigmoid causing for very 
small gradients

• Break symmetry
– If we start with the weights all equal, what will happen?

– Ensure that each hidden unit has different input weights so that the hidden units 
move in different directions.

• Set each weight to a random number in the range

where “fan-in” is the number of inputs to the unit.



Batch, Online, and Online with Momentum
• Batch:  Sum the gradient for each example i. Then take a gradient descent 

step.

• Online: Take a gradient descent step with each input as it is computed (this 
is the algorithm we described)

• Momentum factor: Make the t+1-th update dependent on the t-th update

α is called the momentum factor, and typically take values in the range [0.7, 
0.95]. This tends to keep weight moving in the same direction and improves 
convergence..
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Overtraining Prevention
• Running too many epochs may overtrain the network and result in 

overfitting. Tries too hard to exactly match the training data.

• Keep a validation set and test accuracy after every epoch. Maintain 
weights for best performing network on the validation set and return it 
when performance decreases significantly beyond this.

• To avoid losing training data to validation:
– Use 10-fold cross-validation to determine the average number of epochs that 
optimizes validation performance.

• We will discuss cross-validation later in the course
– Train on the full data set using this many epochs to produce the final result.



Over-fitting Prevention
• Too few hidden units prevent the system from adequately fitting the 

data and learning the concept.

• Too many hidden units leads to over-fitting.

• Can also use a validation set or cross-validation to decide an 
appropriate number of hidden units.

• Another approach to preventing over-fitting is weight decay, in which 
we multiply all weights by some fraction between 0 and 1 after each 
epoch.

- Encourages smaller weights and less complex hypotheses.

- Equivalent to including an additive penalty in the error function proportional to 
the sum of the squares of the weights of the network.



5.6. Learning Time Series Data

• Time-delay neural networks (TDNN) 
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5.7. Deep Neural Networks
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5.8. Radial Basis Function Networks 

• Locally-tuned units: 

𝒙
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Local vs. Distributed Representation 



Training RBF Network

• Hybrid learning 

• First layer centers and spreads (Unsupervised k-means) 

• Second layer weights (Supervised gradient descent) 

• Fully supervised 

•Similar to backpropagation in MLP, gradient descent for all parameters 



RBF Network: Fully Supervised Method

• Similar to backpropagation in MLP 



RBF Network: Fully Supervised Method

• Similar to backpropagation in MLP 


