Machine Learning

Contents

- 1. Introduction
- 2. K-Nearest Neighbor Algorithm
- 3. LDA(Linear Discriminant Analysis)

4. Perceptron

- 5. Feed-Forward Neural Networks
- 6. RNN(Recurrent Neural Networks)
- 7. SVM(Support Vector Machine)
- 8. Ensemble Learning
- 9. CNN(Convolutional Neural Network)
- 10. PCA(Principal Component Analysis)
- 11. ICA(Independent Component Analysis)
- 12. Clustering
- 13. GAN(Generative Adversarial Network)

4.1. Classification

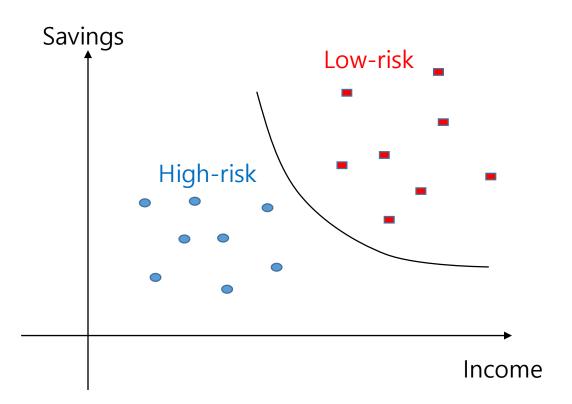
- Credit scoring example:
 - Inputs are income and savings
 - Output is low-risk vs. high-risk
- Formally speaking
 - Input: $\mathbf{x} = [x_1, x_2]^T$
 - Output: $C \in \{0,1\}$
- Decision rule: if we know $P(C|X_1, X_2)$

choose
$$\begin{cases} C = 1 \text{ if } P(C = 1 | x_1, x_2) > 0.5 \\ C = 0 \text{ otherwise} \end{cases}$$

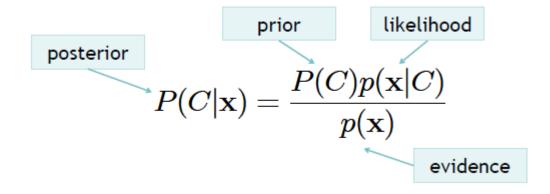
• Or equivalently,

choose
$$\begin{cases} C = 1 \text{ if } P(C = 1 | x_1, x_2) > P(C = 0 | x_1, x_2) \\ C = 0 \text{ otherwise} \end{cases}$$

• And the probability of error: $1 - \max \left[P(C=1|x_1,x_2), P(C=0|x_1,x_2) \right]$



4.2. Bayes' Optimal Classifier



• Bayes rule for K > 1 concepts
$$P(C_i|\mathbf{x}) = \frac{P(C_i)p(\mathbf{x}|C_i)}{p(\mathbf{x})}$$

 $= \frac{p(\mathbf{x}|C_i)P(C_i)}{\sum_{k=1}^{K} p(\mathbf{x}|C_k)P(C_k)}$

- Decision rule using Bayes rule (Bayes optimal classifier):
 - Choose $\arg \max_{C_k} P(C_k | \mathbf{x})$

참조:	<u> </u>	· · · · ·	· · ·	<u> </u>	· · ·	<u> </u>	· · · ·	
베이의 법칙	에 의해							
		P(C r) =	$\frac{P(C, \boldsymbol{x})}{P(\boldsymbol{x})}$				(4.2.4	<u>.</u>
		$I(\mathcal{O} \mathcal{U})$ –	P(x)				(1.2.1	
이고,								
		$P(\mathbf{x} C) =$	$\frac{P(C, \boldsymbol{x})}{P(C)}$				(4.2.5))
								· .
이다 또한,	C가 K 가지일	<u> </u> 경우 결합	·확듈에 디	비하여				
	$P(\mathbf{x}) =$	$\sum^{K} P(\pmb{x}, C_k)$	$=\sum_{k=1}^{K}P(x)$	$ C_{r})P(C)$).		(4.2.6) [
		$\sum_{k=1}^{k} (\omega, \psi_k)$	k=1	ι - _κ , - (Ο)			(,	
이 성립된다	• • • • • •							

4.3. Losses and Risks

- Back to credit scoring example
 - Accepted low-risk applicant increases profit, Rejected high-risk applicant decreases loss
 - In general, loss by accepted high-risk applicant ≠ potential gain by rejected lowrisk applicant
 - Errors are not symmetric!
- Define
 - α_i : Action assigning input to class C_i
 - λ_{ik} : Loss of α_i when the actual class is C_k
- Expected risk: $R(\alpha_i | \mathbf{x}) = \sum_{k=1}^{K} \lambda_{ik} P(C_k | \mathbf{x})$
- Decision rule (minimum risk classifier):
 - Choose $\arg\min_{\alpha_k} R(lpha_k |\mathbf{x})|$

C_1 C_2 Hypothesized $C_1(\alpha_1)$ λ_{11} λ_{12} Classes $C_2(\alpha_2)$ λ_{21} λ_{22} 이 경우 각 클래스별로 위험도 기대치는 $R(\alpha_1 \mathbf{x}) = \lambda_{11}P(C_1 \mathbf{x}) + \lambda_{12}P(C_2 \mathbf{x})$ (4.3)			True Classes	
Hypothesized Classes $C_1(\alpha_1)$ $C_2(\alpha_2)$ λ_{11} λ_{12} λ_{12} λ_{21} 이 경우 각 클래스별로 위험도 기대치는 $R(\alpha_1 \mathbf{x}) = \lambda_{11} P(C_1 \mathbf{x}) + \lambda_{12} P(C_2 \mathbf{x})$ $R(\alpha_2 \mathbf{x}) = \lambda_{21} P(C_1 \mathbf{x}) + \lambda_{22} P(C_2 \mathbf{x})$ (4.3)				C_2
Classes $C_2(\alpha_2)$ λ_{21} λ_{22} 이 경우 각 클래스별로 위험도 기대치는 $R(\alpha_1 \mathbf{x}) = \lambda_{11}P(C_1 \mathbf{x}) + \lambda_{12}P(C_2 \mathbf{x})$ (4.3) $R(\alpha_2 \mathbf{x}) = \lambda_{21}P(C_1 \mathbf{x}) + \lambda_{22}P(C_2 \mathbf{x})$ (4.3)	Hypothesized $C_1($			
$R(\alpha_1 \boldsymbol{x}) = \lambda_{11} P(C_1 \boldsymbol{x}) + \lambda_{12} P(C_2 \boldsymbol{x}) $ $R(\alpha_2 \boldsymbol{x}) = \lambda_{21} P(C_1 \boldsymbol{x}) + \lambda_{22} P(C_2 \boldsymbol{x}) $ (4.3)	Classes $C_2($	α_2)	21	
				(4.3
라 같이 계산된다. 만약, 클래스를 맞추면 손실이 0 (λ, = 0)이고, 클래스	$R(\alpha_2 \boldsymbol{x}) = \lambda_{21}\boldsymbol{x}$	$P(C_1 \boldsymbol{x}) + \lambda_{22}P(C_2 \boldsymbol{x})$.)	• • • (4.3
	가이 게사되다 마야 큰고	내스를 맞추면 손실	$[\dot{0}] \dot{0} (\dot{\lambda}_{\mu} = 0)$	고, 클래스

예제 4.3-1

두 부류 문제에서 C_1 이 아주 중요하여 C_2 로 판별되면 손실이 심각한 경우를 가정하여, 손 실표가 아래와 같이 주어졌다. 판별식을 구하고 판별 영역을 $(P(C_1|\mathbf{x}), P(C_2|\mathbf{x}))$ 공간에 표 시하라. 이를 "0/1" 손실인 경우와 비교하여 보라.

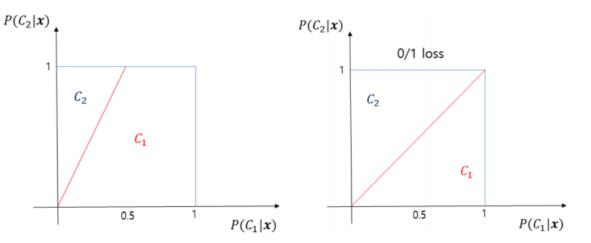
		True Classes				
		C_1	C_2			
Hypothesized	$C_1(\alpha_1)$	0	1			
Hypothesized Classes	$C_2(\alpha_2)$	2	0			

풀이

각 클래스별 위험도 기대치는 $R(\alpha_1 | \mathbf{x}) = P(C_2 | \mathbf{x}), R(\alpha_2 | \mathbf{x}) = 2P(C_1 | \mathbf{x})$ 이다. 그러면 판별 식은

$$\operatorname{arg\,min}_{\alpha_k} R(\alpha_k | \boldsymbol{x}) = \begin{cases} C_1, \text{ if } R(\alpha_1 | \boldsymbol{x}) < R(\alpha_2 | \boldsymbol{x}) \\ C_2, \text{ otherwise} \end{cases} = \begin{cases} C_1, \text{ if } P(C_2 | \boldsymbol{x}) < 2P(C_1 | \boldsymbol{x}) \\ C_2, \text{ otherwise} \end{cases}$$

이다. 즉, C_1 으로 판별되는 영역은 $2P(C_1|\mathbf{x}) - P(C_2|\mathbf{x}) > 0$ 이다. 이를 $(P(C_1|\mathbf{x}), P(C_2|\mathbf{x}))$ 공간에 표시하면 아래와 같다. "0/1 손실"인 경우보다 C_1 의 영역이 크게 확대되었다.



More on Losses and Risks

 $0/1 \log$ $\lambda_{ik} = \begin{cases} 0 \text{ if } i = k \\ 1 \text{ if } i \neq k \end{cases}$ $R(\alpha_i | \mathbf{x}) = \sum_{k=1}^{K} \lambda_{ik} P(C_k | \mathbf{x})$ $=\sum_{k
eq i} P(C_k|\mathbf{x})$ $= 1 - P(C_i | \mathbf{x})$

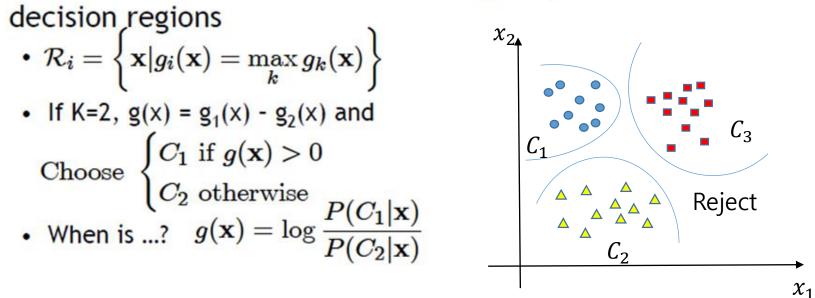
- Rejection $\lambda_{ik} = \begin{cases} 0 \text{ if } i = k \\ \lambda \text{ if } i = K + 1, 0 < \lambda < 1 \\ 1 \text{ otherwise} \end{cases}$ $R(\alpha_{K+1}|\mathbf{x}) = \sum_{k=1}^{K} \lambda P(C_k|\mathbf{x}) = \lambda$ $R(lpha_i|\mathbf{x}) = \sum P(C_k|\mathbf{x})$ $= 1 - P(C_i | \mathbf{x})$ Decision rule: Choose C_i if $R(\alpha_i | \mathbf{x}) < R(\alpha_k | \mathbf{x}), \forall k \neq i$ $R(\alpha_i | \mathbf{x}) < R(\alpha_{K+1} | \mathbf{x})$ Reject if $R(\alpha_{K+1}|\mathbf{x}) < R(\alpha_i|\mathbf{x}), i = 1, \dots, K$ Choose C_i if $P(C_i|\mathbf{x}) > P(C_k|\mathbf{x}), \forall k \neq i$ $P(C_i|\mathbf{x}) > 1 - \lambda$ Reject otherwise
- For minimum risk, choose the most probable class

4.4. Discriminant Functions

 Classification = implementing a set of discriminant functions $g_i(x)$

- Choose C_i if $g_i(\mathbf{x}) = \max_k g_k(\mathbf{x})$ Note: $g_i(\mathbf{x}) = \begin{cases} -R(\alpha_i | \mathbf{x}) & \text{Minimum risk classifier} \\ P(C_i | \mathbf{x}) & \text{Bayes classifier with } 0/1 \text{ loss} \\ P(C_i)p(\mathbf{x} | C_i) & \text{ditto} \end{cases}$

o Discriminant function divides the input space into K



Likelihood-based vs. Discriminant-based

• Likelihood-based classification

Learn (estimate) distribution $p(\mathbf{x}|C_i)$, and use Bayes' rule to calculate $p(C_i|\mathbf{x}) : g_i(\mathbf{x}) = \log P(C_i|\mathbf{x})$

• Discriminant-based classification

Learn $g_i(\mathbf{x}|\Phi_i)$ directly from data; no density estimation

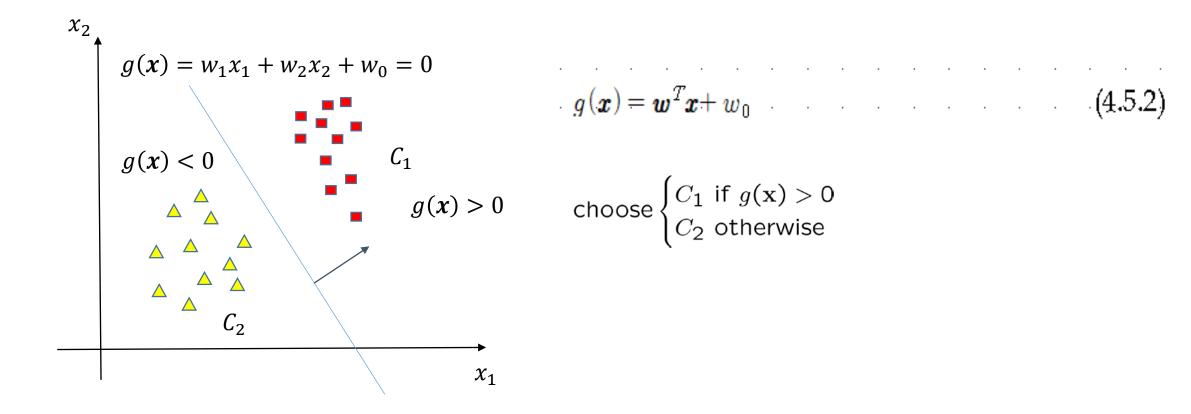
• Estimating the boundaries is enough; no need to accurately estimate the densities inside the boundaries!

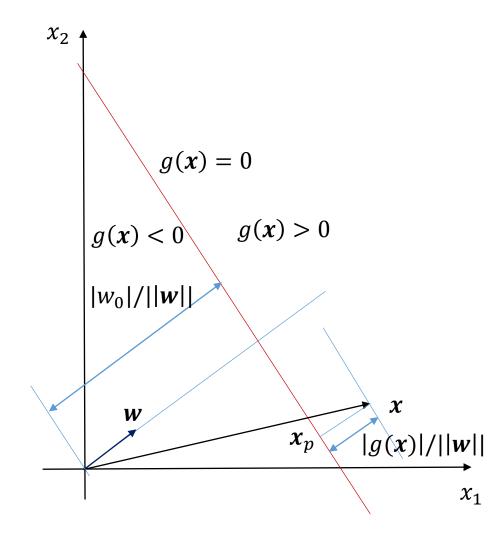
4.5. Linear Discriminant Function

• Linear discriminant

$$g_i(\mathbf{x}|\mathbf{w}_i, w_{i0}) = \mathbf{w}_i^T \mathbf{x} + w_{i0} = \sum_{j=1}^d w_{ij} x_j + w_{i0}$$

- Advantages:
 - Simple: O(d) space/computation
 - Knowledge extraction: Weighted sum of attributes; positive/negative weights, magnitudes (credit scoring)
 - Optimal when $p(\mathbf{x}|C_i)$ are Gaussian with shared covariance matrix; useful when classes are (almost) linearly separable



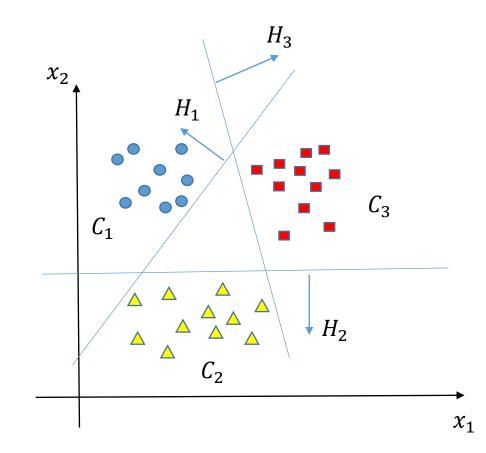


Two points x_1 and x_2 on the decison surface

$\boldsymbol{w}^T \boldsymbol{x}_1 + \boldsymbol{w}_0 = \boldsymbol{w}^T \boldsymbol{x}_2 + \boldsymbol{w}_0$	(4.5.3)
$\boldsymbol{w}^{T}(\boldsymbol{x}_{1}-\boldsymbol{x}_{2})=0$	
$\boldsymbol{x} = \boldsymbol{x}_p + r \frac{\boldsymbol{w}}{\ \boldsymbol{w}\ }$	(4.5.5)
$r = \frac{g(\boldsymbol{x})}{ \boldsymbol{w} }$	(4.5.6)

Position from the origin

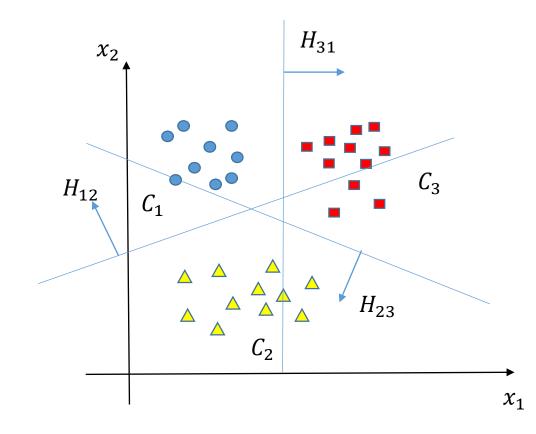
Multiple Classes (One-vs-All)



$$g_i(\mathbf{x}|\mathbf{w}_i, w_{i0}) = \mathbf{w}_i^T \mathbf{x} + w_{i0}$$

Choose C_i if $g_i(\mathbf{x}) = \max_j g_j(\mathbf{x})$ Classes are linearly separable

Pairwise Separation (One-vs-One)

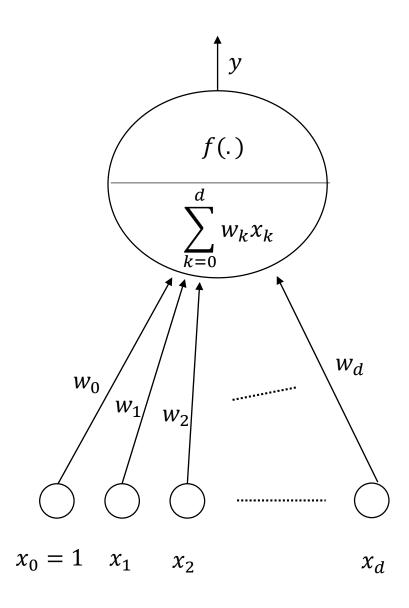


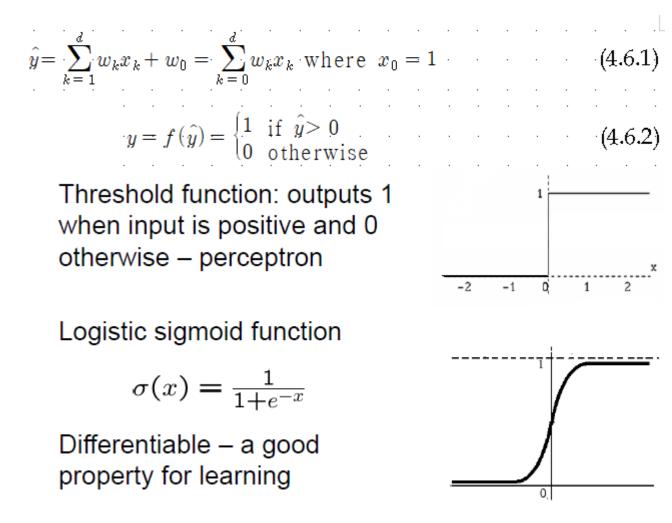
$$g_{ij}(\mathbf{x}|\mathbf{w}_{ij}, w_{ij0}) = \mathbf{w}_{ij}^T \mathbf{x} + w_{ij0}$$

$$g_{ij}(\mathbf{x}) = \begin{cases} > 0 \text{ if } \mathbf{x} \in C_i \\ \leq 0 \text{ if } \mathbf{x} \in C_j \\ \text{don't care otherwise} \end{cases}$$

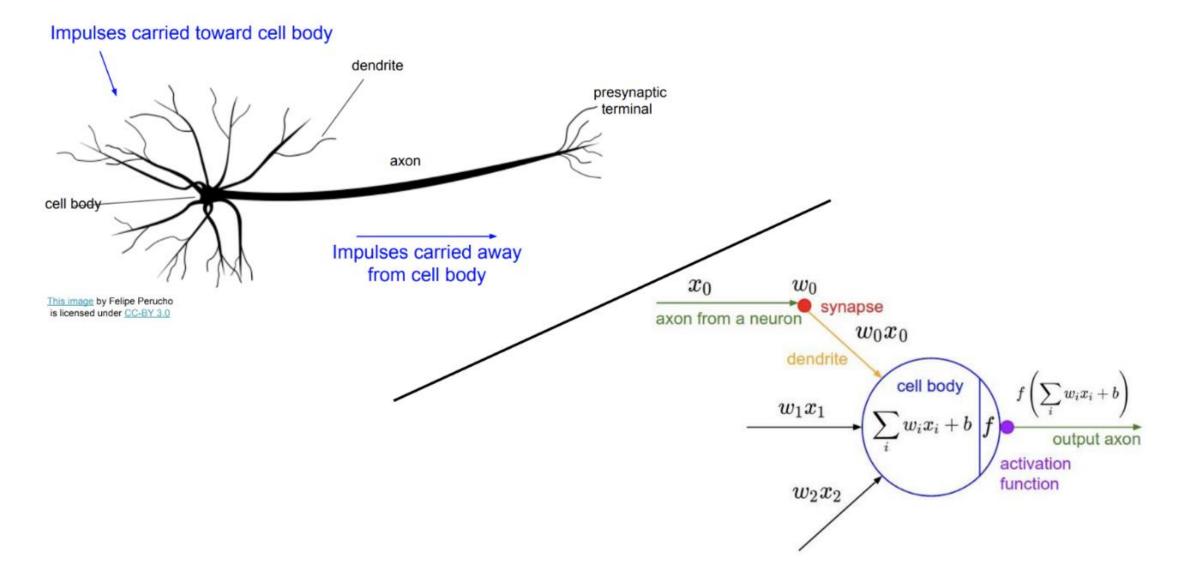
Choose
$$C_i$$
 if $\forall j \neq i, g_{ij}(\mathbf{x}) > 0$

4.6. Single Layer Perceptron





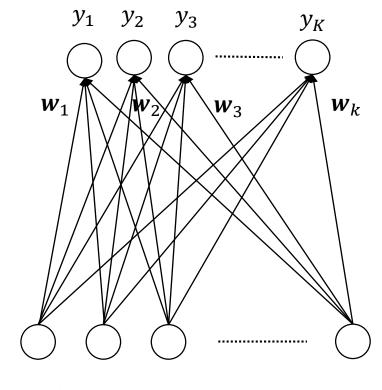
 $y = f(\hat{y}) = \frac{1}{1 + e^{-\hat{y}}}$ (4.6.3)



Side-by-side illustrations of biological and artificial neurons, via <u>Stanford's CS231n</u>. This analogy can't be taken too literally — biological neurons can do things that artificial neurons can't, and vice versa — but it's useful to understand the biological inspiration. See Wikipedia's description of <u>biological vs. artificial neurons</u> for more detail.

Single-Layer Perceptron with K Outputs

 x_d



 $x_0 = 1 \quad x_1 \qquad x_2$

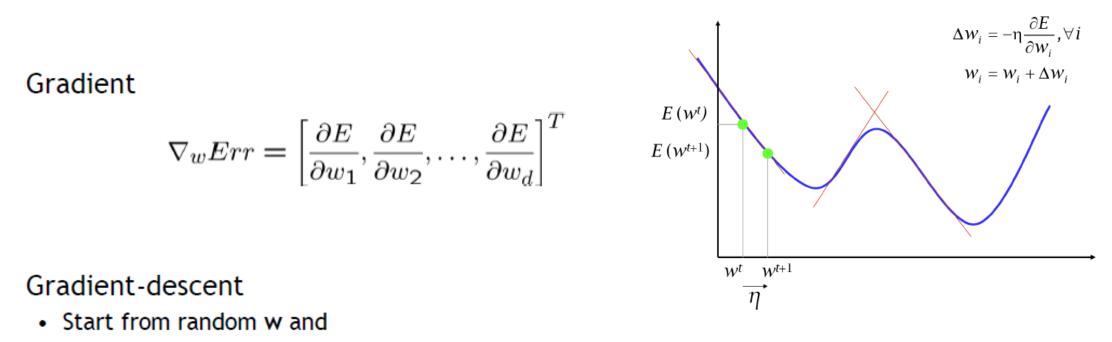
$$y_{k} = f(\hat{y_{k}}) = \frac{1}{1 + e^{-\sum_{i=0}^{d} w_{ki} x_{i}}}$$
(4.6.4)

choose C_i if $y_i = \max_k y_k$

4.7. Training Perceptron Gradient Descent

 $Err(\mathcal{X}|\mathbf{w})$ is the error with parameters \mathbf{w} on sample \mathcal{X}

• Want: $\mathbf{w}^* = \arg\min_w Err(\mathcal{X}|\mathbf{w})$



· update w iteratively in the negative direction of gradient

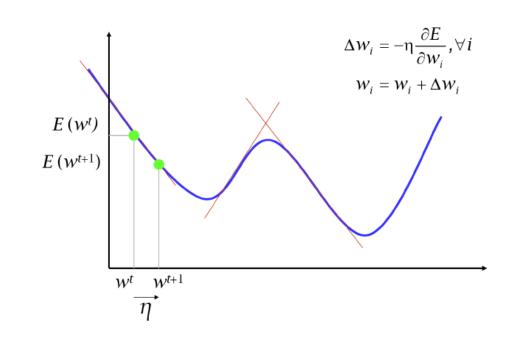
Gradient Descent

Training Sample $\boldsymbol{x}^t = [x_1^t, x_2^t, ..., x_d^t]^T$

Perceptron Output $y^t \iff$ Desired Output r^t

Regression (Linear Output)

 $y^{t} = \sum_{k=0}^{d} w_{k} x_{k}^{t}$ $E = \frac{1}{2} (r^{t} - y^{t})^{2}$ $\frac{\partial E}{\partial w_{k}} = \frac{\partial E}{\partial y^{t}} \frac{\partial y^{t}}{\partial w_{k}} = -(r^{t} - y^{t}) x_{k}^{t}$ (4.7.2) $\Delta w_{k} = -\eta \frac{\partial E}{\partial w_{k}} = \eta (r^{t} - y^{t}) x_{k}^{t}$ (4.7.3)



Gradient Descent

Training Sample $\boldsymbol{x}^{t} = [x_{1}^{t}, x_{2}^{t}, ..., x_{d}^{t}]^{T}$

Perceptron Output $y^t \iff$ Desired Output r^t

Classification (Sigmoid Output)

$$\hat{y}^{t} = \sum_{k=0}^{d} w_{k} x_{k}^{t}$$
(4.7.5)

$$y^{t} = f(\hat{y}^{t}) = \frac{1}{1 + e^{-\hat{y}^{t}}}$$
(4.7.6)

$$E = \frac{1}{2} (r^{t} - y^{t})^{2}$$
(4.7.2)

$$\frac{\partial E}{\partial w_{k}} = \frac{\partial E}{\partial y^{t}} \frac{\partial y^{t}}{\partial \hat{y}^{t}} \frac{\partial \hat{y}^{t}}{\partial w_{k}} = -(r^{t} - y^{t})y^{t}(1 - y^{t})x_{k}^{t}$$
(4.7.7)

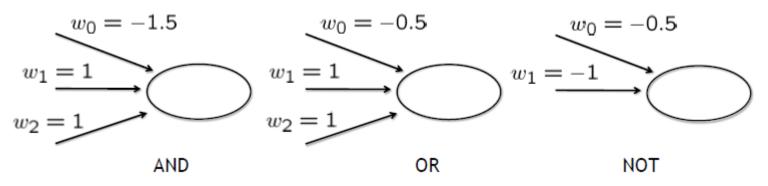
$$\Delta w_{k} = -\eta \frac{\partial E}{\partial w_{k}} = \eta (r^{t} - y^{t})y^{t}(1 - y^{t})x_{k}^{t}$$
(4.7.8)

$E_{C\!E} = - r^t \log y^t - (1 - r^t) \log (1 - y^t)$	• •	•	•	•	•	•	(4.7.9)
$\frac{\partial E_{CE}}{\partial w_k} = \frac{\partial E_{CE}}{\partial y^t} \frac{\partial y^t}{\partial \hat{y}^t} \frac{\partial \hat{y}^t}{\partial w_k} = -(r^t - y^t) x_k^t$	•			•			t (4.7:10)
$\Delta w_{k} = -\eta \frac{\partial E_{C\!E}}{\partial w_{k}} = \eta (r^{t} - y^{t}) x_{k}^{t}$							

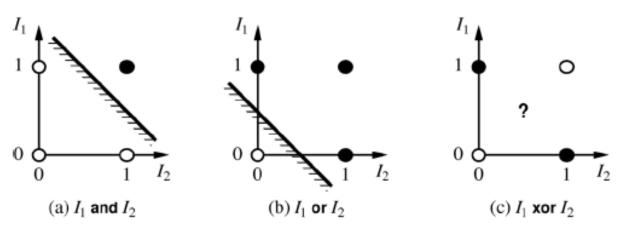
·	퍼셉트론 알고리즘 이는
•	\bigcirc 입력과 목표값의 쌍으로 구성된 학습패턴 $D = \{(\boldsymbol{x}^t, r^t)\}_{t=1}^{p} \in \mathcal{A}$ 장한다.
	① 가중치를 임의의 값으로 초기화 시킨다.
:	② 입력 $\boldsymbol{x}^{t}(t=1,2,3,,P)$ 에 대하여 출력 y^{t} 를 계산한다.
	③ 가중치 변경식에 따라 가중치를 변경한다.
•	④ 오차가 원하는 수준 이하이면 학습을 종료시키고, 그렇지 않으면 ②부터
	다시 수행한다.

Expressiveness of Perceptrons

• Consider perceptron with a = step function



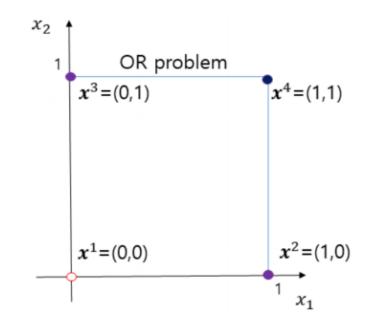
• Can represent AND, OR, NOT, majority, etc., but not XOR



• Represents a linear separator in input space: $\sum_j w_j x_j > 0 \Leftrightarrow \mathbf{w}^T \mathbf{x} > 0$

여제 4.7-1

아래 그림과 같이 OR 문제를 입력 2 출력 1개의 노드를 지닌 퍼셉트론으로 학습하기 위하 여 가중치를 $w = (w_0, w_1, w_2)^T = (0, 0.3, 0.6)^T$ 로 초기화 하였다고 가정하자. 출력 목표값은 입력 x^1 에 대해서만 0이고 나머지 입력 x^2, x^3, x^4 에 대해서는 1이다. 4개의 입력 중 임의의 하나를 골라서 퍼셉트론에 입력하여 CE 오차함수에 따른 가중치 변경량을 구하여 보아라. 학습률은 $\eta = 0.1$ 이고, 퍼셉트론의 출력노드는 시그모이드 활성화 함수로 가정하라.



풀이

x⁴ = (1,1)^T이 입력되었다고 하자. 그러면 퍼셉트론의 출력노드에 대한 가중치 합은
ŷ = (0,0.3,0.6)(1,1,1)^T = 0.9 이고 출력은 y = 1/(1+exp(-ŷ)) = 0.7109 이다. 목표값이
r⁴ = 1이므로 Δw₀ = η(r-y) = 0.02891 이고, Δw₁ = η(r-y)x₁ = 0.02891, Δw₂ = η(r-y)x₂ = 0.02891 이다. 따라서, 가중치는 w₀ = w₀ + Δw₀ = 0.02891, w₁ = w₁ + Δw₁ = 0.32891, w₂ = w₂ + Δw₂ = 0.62891 와 같이 변경된다.

다음으로 \boldsymbol{x}^1 이 입력되면 $\hat{y} = (0.02891, 0.32891, 0.62891)(1, 0, 0)^T = 0.02891$ 이고