# Machine Learning

# Contents

- 1. Introduction
- 2. K-Nearest Neighbor Algorithm
- 3. LDA(Linear Discriminant Analysis)
- 4. Perceptron
- 5. Feed-Forward Neural Networks
- 6. RNN(Recurrent Neural Networks)
- 7. SVM(Support Vector Machine)
- 8. Ensemble Learning
- 9. CNN(Convolutional Neural Network)
- 10. PCA(Principal Component Analysis)
- 11. ICA(Independent Component Analysis)
- 12. Clustering
- 13. GAN(Generative Adversarial Network)

### 3.1. Linear Discriminant Analysis (LDA)

- Problem: Given a set of data points, each of which is labelled with a class, find the best set of basis vectors for projecting the data points such that classification is improved.
- Idea: Form the projection such that the variability across the different classes is maximized, while the variability within each class is minimized.



#### Which one is the best projection?



# **LDA: Maximize Difference of Means**

- Considering the simple problem of projecting onto one dimension
- The two classes should be well separated in this single dimension
- A simple idea is to maximize the difference of the means in the projected space
- What is a problem with this solution?



# LDA: A Better Idea

- Fisher's idea: Fisher's linear discriminant
  - Maximize a function that will give a large separation between the projected class means
  - While also giving a small variance within each class, thereby minimizing the class overlap



## **3.2. Projection with Basis Vectors**

- Point A =  $(a_1, a_2)^T$
- Basis Vector  $\mathbf{w} = (w_1, w_2)^T$
- Projection  $\mathbf{w}^T A = w_1 a_1 + w_2 a_2$

| <u></u>                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------|
| 참조:                                                                                                                                      |
| T(transpose)는 행렬 혹은 벡터에서 행과 열의 위치를 교환하는 이항 연산자이                                                                                          |
| 다. 즉,                                                                                                                                    |
|                                                                                                                                          |
| $(a_1, a_2)^T = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} $ (3.2.4)                                                                       |
| $\ldots$                                                |
| 이고 · · · · · · · · · · · · · · · · · · ·                                                                                                 |
| T                                                                                                                                        |
| $\begin{bmatrix} a_{11} a_{12} \\ a_{21} a_{22} \end{bmatrix}^T = \begin{pmatrix} a_{11} a_{21} \\ a_{12} a_{22} \end{pmatrix} $ (3.2.5) |
| $\cdots \cdots $  |
| 이다. 또한 행렬 A와 B의 곱에 대하여 이항 연산자 T를 적용하면                                                                                                    |
| $(AB)^T = B^T A^T $ (3.2.6)                                                                                                              |
| 이 된다.                                                                                                                                    |

#### 3.3. LDA Formulation



$$(m_1 - m_2)^2 = (\boldsymbol{w}^T \boldsymbol{m}_1 - \boldsymbol{w}^T \boldsymbol{m}_2)^2 = (\boldsymbol{w}^T (\boldsymbol{m}_1 - \boldsymbol{m}_2))^2 \qquad (3.3.4)$$
  
=  $\boldsymbol{w}^T (\boldsymbol{m}_1 - \boldsymbol{m}_2) (\boldsymbol{m}_1 - \boldsymbol{m}_2)^T \boldsymbol{w} = \boldsymbol{w}^T S_B \boldsymbol{w}$ 

$$S_{\mathcal{B}} = (\boldsymbol{m}_1 - \boldsymbol{m}_2)(\boldsymbol{m}_1 - \boldsymbol{m}_2)^T$$
 (3.3.5)



 $s_1^2 =$ 

=

| $J(\boldsymbol{w}) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3.3.1)  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| $\sum_{t} (\boldsymbol{w}^{T} \boldsymbol{x}^{t} - \boldsymbol{m}_{1})^{2} \boldsymbol{r}^{t} = \sum_{t} (\boldsymbol{w}^{T} \boldsymbol{x}^{t} - \boldsymbol{w}^{T} \boldsymbol{m}_{1})^{2} \boldsymbol{r}^{t} = \sum_{t} (\boldsymbol{w}^{T} (\boldsymbol{x}^{t} - \boldsymbol{m}_{1}))^{2} \boldsymbol{r}^{t}$ $\sum_{t} \boldsymbol{w}^{T} (\boldsymbol{x}^{t} - \boldsymbol{m}_{1}) (\boldsymbol{x}^{t} - \boldsymbol{m}_{1})^{T} \boldsymbol{w} \boldsymbol{r}^{t} = \boldsymbol{w}^{T} S_{1} \boldsymbol{w}$ | (3.3.6)  |
| t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (3.3.7)  |
| $s_1^2 + s_2^2 = \boldsymbol{w}^T \boldsymbol{S}_{\boldsymbol{W}} \boldsymbol{w}$                                                                                                                                                                                                                                                                                                                                                                                                                                   | (3.3.8)  |
| $S_W = S_1 + S_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (3.3.9)  |
| $J(\boldsymbol{w}) = \frac{\boldsymbol{w}^T S_B \boldsymbol{w}}{\boldsymbol{w}^T S_W \boldsymbol{w}}$                                                                                                                                                                                                                                                                                                                                                                                                               | (3.3.10) |

#### 예제 3.3-1

행렬  $A = (a_{ij})$ 가  $d \times d$  정방행렬이고, 다음 함수

$$g(\boldsymbol{w}) = \boldsymbol{w}^{T} \boldsymbol{A} \boldsymbol{w} = \sum_{i=1}^{d} \sum_{j=1}^{d} w_{i} w_{j} a_{ij}$$

에 대하여  $\frac{\partial g}{\partial \boldsymbol{w}}$ 를 구하여라.

풀이

문제로 주어진 함수를 더 자세히 적으면

$$g(w) = w^{T} A w = \sum_{i=1}^{d} \sum_{j=1}^{d} w_{i} w_{j} a_{ij} = w_{k} \sum_{j=1}^{d} w_{j} a_{kj} + \sum_{i \neq k} w_{i} \sum_{j=1}^{d} w_{j} a_{ij}$$

이 된다. 여기에, 
$$\sum_{j=1}^{d} w_j a_{kj} = w_k a_{kk} + \sum_{j \neq k} w_j a_{kj}$$
와  $\sum_{j=1}^{d} w_j a_{ij} = w_k a_{ik} + \sum_{j \neq k} w_j a_{ij}$ 를 대입하면

$$g(\boldsymbol{w}) = w_k \sum_{j \neq k} w_j a_{kj} + w_k^2 a_{kk} + \sum_{i \neq k} w_i w_k a_{ik} + \sum_{i \neq k} \sum_{j \neq k} w_i w_j a_{ij}$$

이다. 따라서,

$$\frac{\partial g(\boldsymbol{w})}{\partial \boldsymbol{w}} = \sum_{j \neq k} w_j a_{kj} + 2w_k a_{kk} + \sum_{i \neq k} w_i a_{ik} = \sum_{j=1}^d w_j a_{kj} + \sum_{i=1}^d w_i a_{ik} = A\boldsymbol{w} + A^T \boldsymbol{w}$$

이 된다.

$$\begin{aligned} \mathbf{Maximizing} \qquad J(w) &= \frac{w^T S_B w}{w^T S_W w} \end{aligned} \tag{3.3.10} \end{aligned}$$

$$\begin{aligned} & \text{From } \frac{\partial J(w)}{\partial w} &= 0, \qquad 2S_B w (w^T S_W w) - (w^T S_B w) 2S_W w = 0 \qquad (3.3.11) \end{aligned}$$

$$\begin{aligned} & S_B w (w^T S_W w) &= (w^T S_B w) S_W w \qquad (3.3.12) \end{aligned}$$

$$\begin{aligned} & S_B w &= \frac{(w^T S_W w)}{(w^T S_B w)} S_W w = \lambda S_W w \qquad (3.3.13) \end{aligned}$$

$$\begin{aligned} & S_B &= (m_1 - m_2)(m_1 - m_2)^T \end{aligned}$$

$$\begin{aligned} & (3.3.5) \implies S_B w &= (m_1 - m_2)(m_1 - m_2)^T w \end{aligned}$$

$$\begin{aligned} & (3.3.14) \end{aligned}$$

| a자원 맥터 <b>w</b> = (w | <sub>1</sub> ,w <sub>2</sub> ,,w <sub>d</sub> ) <sup>T</sup> 에 대힌                | - 미문 가능                                                                     | 하한 스킬   | 라 힘 | }← g> | 7       |
|----------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------|-----|-------|---------|
|                      | $g\left(w_{1},w_{2},,w_{d}\right)=g$                                             | <b>(w</b> )                                                                 |         |     |       | (3.3.16 |
| 로 주어졌다. 그러           | 면, 함수 g의 벡터                                                                      | <b>w</b> 에 대한                                                               | 미분은     |     |       |         |
|                      |                                                                                  | $\left(\frac{\partial g}{\partial w_1}\right)$                              |         |     |       |         |
|                      |                                                                                  | $\partial w_1$                                                              |         |     |       |         |
|                      | $\frac{\partial g}{\partial g} =$                                                |                                                                             |         |     |       | (3.3.17 |
|                      | $\partial \boldsymbol{w}$                                                        | 80                                                                          |         |     |       | .X      |
|                      |                                                                                  | $\left(\frac{\partial g}{\partial w_d}\right)$                              |         |     |       |         |
|                      |                                                                                  |                                                                             |         | •   | • •   |         |
| 이다. 또한 2차 미          | 분은                                                                               |                                                                             |         | • • | • •   |         |
|                      | $(\partial^2 a)$                                                                 | дg                                                                          | · · · · |     |       |         |
|                      | $\frac{\partial^2 g}{\partial w_1^2}$                                            | $\dots \frac{\partial v_1}{\partial w_1} \partial w_2$                      |         | • • |       |         |
|                      | $\partial^2 q$                                                                   | +. `                                                                        | *       | · · |       |         |
|                      | $\frac{\partial \boldsymbol{w}^2}{\partial \boldsymbol{w}^2} =  \boldsymbol{w} $ | •                                                                           |         | · · |       | (3.3.18 |
|                      | ∂g                                                                               | $\frac{\partial^2 g}{\partial w_d^2}$ $\frac{\partial^2 g}{\partial w_d^2}$ |         |     |       |         |
|                      | $\overline{\partial w}_{d} \partial w$                                           | $\frac{1}{\partial w_{d}^{2}}$                                              | .)      | • • |       |         |

| 이 된다. 벡터 값을 지닌 함수 g가                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| $ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3.3.19)  |
| $g(w) = \begin{pmatrix} g_1(w) \\ \vdots \\ g_n(w) \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
| 로 주어지면 g의 w에 대한 Jacobian 행렬은                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| $\left(\frac{\partial g_1}{\partial w_1} \dots \frac{\partial g_n}{\partial w_1}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| $\frac{\partial g}{\partial w} = \begin{vmatrix} \ddots & \ddots \\ \cdot & \cdot \\ \cdot & $ | (3.3.20)  |
| $\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · |
| 이다. 또한                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| $\frac{\partial f(\boldsymbol{w})g(\boldsymbol{w})}{\partial \boldsymbol{w}} = \frac{\partial f(\boldsymbol{w})}{\partial \boldsymbol{w}}g(\boldsymbol{w}) + f(\boldsymbol{w})\frac{\partial g(\boldsymbol{w})}{\partial \boldsymbol{w}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3.3.21)  |
| $\frac{\partial f(\boldsymbol{w})/g(\boldsymbol{w})}{\partial \boldsymbol{w}} = \left[\frac{\partial f(\boldsymbol{w})}{\partial \boldsymbol{w}}g(\boldsymbol{w}) - f(\boldsymbol{w})\frac{\partial g(\boldsymbol{w})}{\partial \boldsymbol{w}}\right]/g^2(\boldsymbol{w})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (3.3.22)  |
| $\frac{\partial f(g(\boldsymbol{w}))}{\partial \boldsymbol{w}} = f'(g(\boldsymbol{w}))\frac{\partial g(\boldsymbol{w})}{\partial \boldsymbol{w}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3.3.23)  |
| 이다                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |

# More than 2 Classes (K > 2)

• Projection from d-dim space to (c-1)-dim space:

• 
$$y_i = \mathbf{w}_i^T \mathbf{x}, \quad i = 1, \dots, c-1$$

- $y = W^T x$  (W = d×(c-1) matrix,  $w_i$  is the i-th column vector)
- $\bullet$  Within-class scatter matrix for  $\mathcal{C}_i$  is

$$\mathbf{S}_i = \sum_{\mathbf{t}} \mathbf{r}_i^{\mathbf{t}} (\mathbf{x}^{\mathbf{t}} - \mathbf{m}_i) (\mathbf{x}^{\mathbf{t}} - \mathbf{m}_i)^T$$

where  $r_i^t = 1$  if  $x^t \in C_i$  and 0 otherwise.

• The total within-class scatter is

$$\mathbf{S}_{\mathbf{W}} = \sum_{i=1}^{K} \mathbf{S}_i$$

• The between-class scatter matrix is

$$\mathbf{S}_{\mathbf{B}} = \sum_{i=1}^{K} \mathbf{N}_i (\mathbf{m}_i - \mathbf{m}) (\mathbf{m}_i - \mathbf{m})^T$$

where  $N_i = \sum_t r_i^t$ 

## More than 2 Classes (K > 2)

• The between-class scatter matrix after projection is:

• The within-class scatter matrix after projection is:

 $\bullet\,$  Thus we need to find the matrix  ${\bf W}$  that maximizes

$$J(\mathbf{W}) = \frac{|\mathbf{W}^{T}\mathbf{S}_{B}\mathbf{W}|}{|\mathbf{W}^{T}\mathbf{S}_{W}\mathbf{W}|}$$

• The largest eigenvectors of  $S_W^{-1}S_B$  are the solution.

# LDA on Vowels Data

 11 vowels from words spoken by fteen speakers. (Source: David Deterding, Mahesan Niranjan, Tony Robinson, see Hastie book website for data)



### LDA on Vowels Data: Decision Boundaries



Canonical Coordinate 2

Canonical Coordinate 1