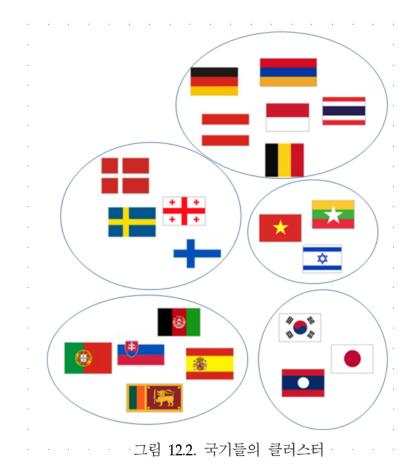
Machine Learning

Contents

- 1. Introduction
- 2. K-Nearest Neighbor Algorithm
- 3. LDA(Linear Discriminant Analysis)
- 4. Perceptron
- 5. Feed-Forward Neural Networks
- 6. RNN(Recurrent Neural Networks)
- 7. SVM(Support Vector Machine)
- 8. Ensemble Learning
- 9. CNN(Convolutional Neural Network)
- 10. PCA(Principal Component Analysis)
- 11. ICA(Independent Component Analysis)
- 12. Clustering
- 13. GAN(Generative Adversarial Network)

12.1. Clustering

- Classification (known categories)
- Clustering (creation of new categories)



Clustering

- Clustering: grouping a set of objects into classes of similar objects
 Subjective process
- Unsupervised learning: learning from unlabelled data, as opposed to supervised data where a classification of examples is given
- Many applications in science and engineering (data mining, statistical data analysis, pattern recognition, image analysis, information retrieval, bioinformatics, data compression, computer graphics
- Characteristics
 - Dense in a certain area of space
 - high intra-class similarity
 - low inter-class similarity
 - It is the commonest form of unsupervised learning

12.2. Issues for clustering

- "Groupness": What is a natural grouping among these objects?
- "Similarity/Distance": What makes objects related?
- "Representation": How do we represent objects? Vectors? Do we normalise?
- "Parameters": How many clusters? Fixed a priori? Data-driven?
- "Algorithms": Partitioning the data? Hierarchical algorithm?
- Formal foundation and convergence

Groupness: What is a natural grouping among these objects?

.

How do we define similarity?

Hard to define! But we know it when we see it

- The real meaning of similarity is a philosophical question. We will take a more pragmatic approach
- Depends on representation and algorithm. For many rep./alg., easier to think in terms
 of a distance (rather than similarity) between vectors.

A distance measure : properties?

• Symmetry

 $d(\boldsymbol{x}, \boldsymbol{y}) = d(\boldsymbol{y}, \boldsymbol{x})$

• Self-similarity

• Triangular-Inequality

 $d(\pmb{x}, \pmb{y}) + d(\pmb{y}, \pmb{z}) \geq d(\pmb{x}, \pmb{z})$

Distance measures

• Two objects (p features)

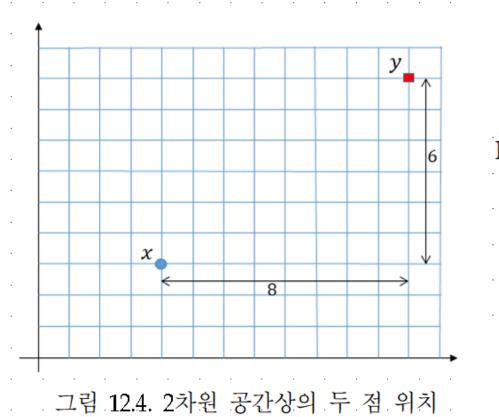
$$x = (x_1, x_2, ..., x_p)$$
 and $y = (y_1, y_2, ..., y_p)$ (12.2.1)

• The Minkowski Distance Metric

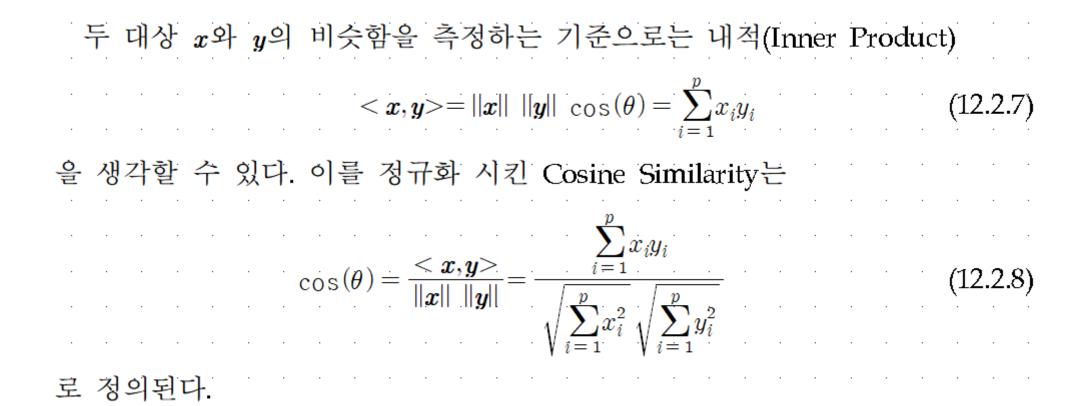
$$d(\boldsymbol{x}, \boldsymbol{y}) = \left(\sum_{i=1}^{p} |x_i - y_i|^r\right)^{1/r}$$
(12.2.2)

• Euclidean distance, Manhattan distance, supreme distance, infimum distance

An example

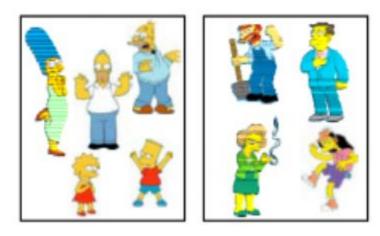


Euclidean $d(x, y) = \sqrt{8^2 + 6^2} = 10$					(12.2.3)
Manhattan $d(\boldsymbol{x}, \boldsymbol{y}) = 8 + 6 = 14$					(12.2.4)
Sup $d(x, y) = \max\{8, 6\} = 8$					(12.2.5)
Inf $d(x, y) = \min\{8, 6\} = 6$	•			•	(12.2.6)

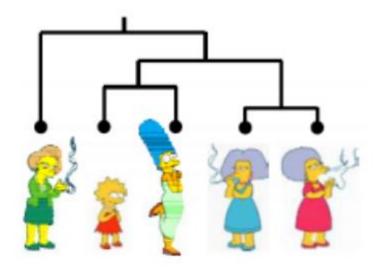


Clustering algorithms

- Partitional Algorithm
 - Usually start with a random partitioning
 - K means clustering



- Hierarchical Algorithm
 - Bottom-up
 - Top-down



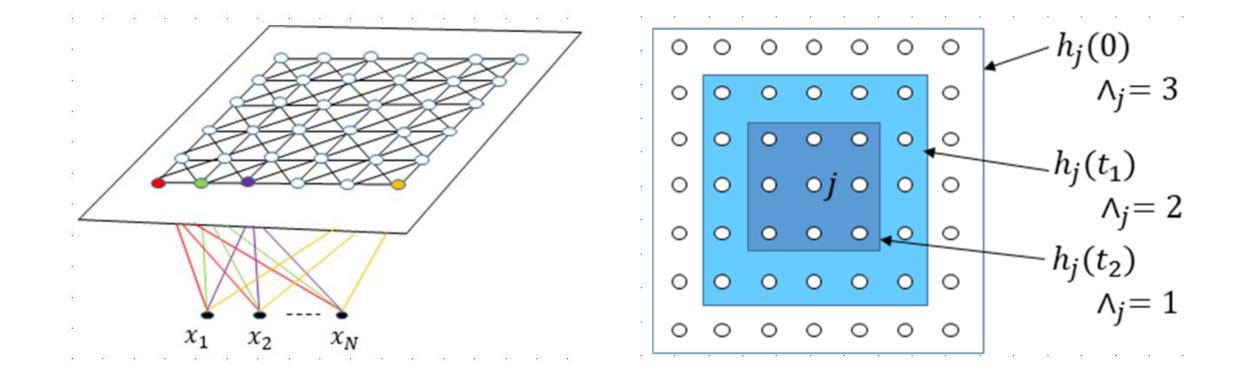
Clustering algorithms

상향식 집적 클러스터링
① 각 대상이 개별적으로 하나의 클러스터에 배정되게 한 후
② 가장 가까운 쌍을 반복적으로 합치면서 상위 클러스터를 만들어
③ 하나의 클러스터가 될 때까지 이 과정을 반복함
하향식 구분 클러스터링:
① 모든 대상을 하나의 클러스터로 묶은 후
② 한 클러스터를 두 개의 클러스터로 나누는 가능한 방법 중에서 최상의 결과를
택하며
③ 이 과정을 모든 클러스터를 대상으로 반복함

Distance between clusters

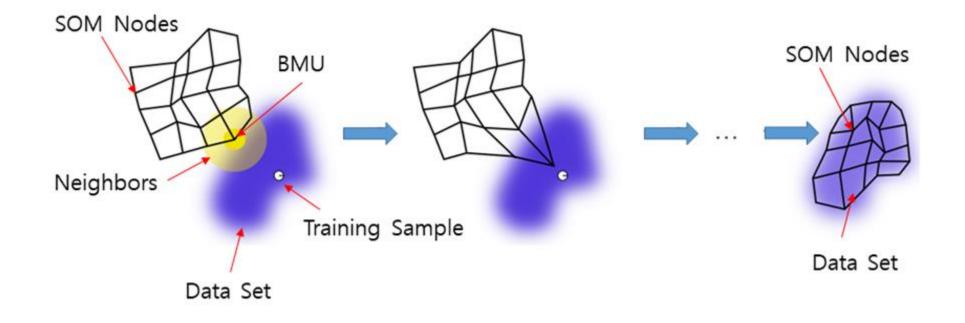
- Single-link nearest neighbor: distance between their closest members
- Complete-link farthest neighbor: distance between their farthest members
- Centroid: distance between the centers of gravity of the two clusters
- Average: distance between the average of all cross-cluster pairs

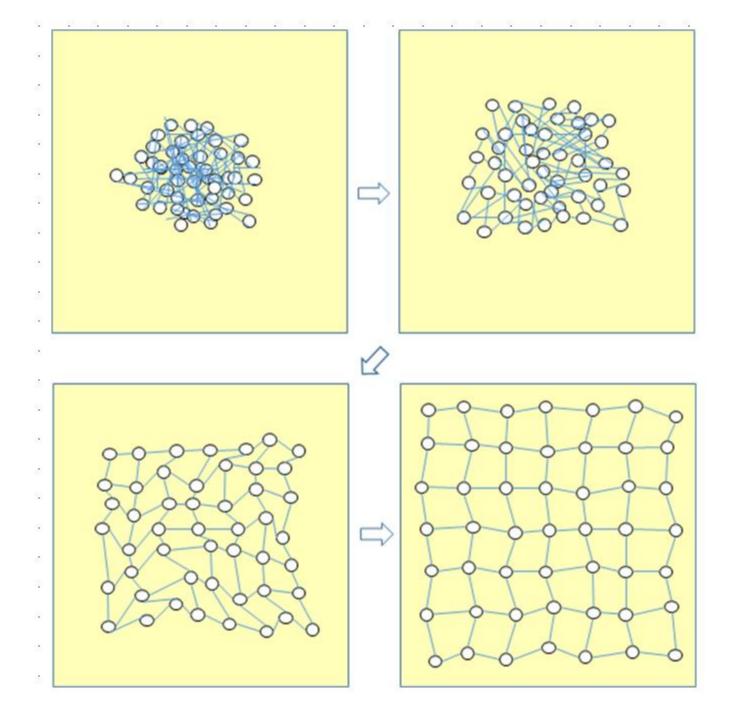
12.3. SOM(Self-Organizing Map)



SOM 학습 알고리즘
①·초기화 · · · · · · · · · · · · · · · · · · ·
N 입력노드에서 M 출력노드로 연결된 가중치 벡터들을 임의의 작은 값으로 초기
화 한다. 그리고, 위상정보의 초기 이웃 반경 Λ_j 를 설정한다.
② 입력 부여
새로운 입력벡터 x 를 입력노드에 부여한다.
③ 모든 출력노드의 거리 계산
모든 출력노드가 지닌 가중치 벡터와 입력벡터 사이의 거리
$J = \sum_{k=1}^{N} (12.2.1)$
$d_j = \sum_{i=1}^{n} (x_i - w_{ji}(t))^2 $ (12.3.1)
를 계산한다. 여기서, t는 시간 <u>인덱스이다</u> .

④ 최소거리 출	有노드 선정							
모든 출력노드들	의 거리 중에서 기	\ 장 거리가	작은 출력	노드를	•			
	j [*]	*= arg min	$_{j}$ d_{j}				(12.3	3.2)
와 같이 결정한	다. 여기서, 출력 <u>-</u>	ェ드 y _{j*} 를	BMU(Best	Match	ing	Unit)c	이라고	힌
다.								
⑤ <u>BMU</u> 와 이웃	노드의 가중치 변	경						
${ ext{BMU}} y_{j^*}$ 와 h_{j^*} (t)에 의해 결정된	이웃 출력-	-드들의 >	가중치를	•			
	$w_{ji}(t+1) = w_{ji}$	$(t) + \eta(t)h_j$	$(t)(x_i - u)$	$w_{ji}(t)$)			(12.3	3.3
에 따라 변경시험	<u></u>]다. 여기서, η(t)	는 학습률이	다.					
⑥ ②부터 반복형	<u> </u>							
and the second						1. Sec. 1. Sec. 1.	100 C 100 C	1.1





12.4. Conscience Learning

$$y_j = \begin{cases} 1 & \text{if } ||\boldsymbol{w}_j - \boldsymbol{x}||^2 \le ||\boldsymbol{w}_i - \boldsymbol{x}||^2 \forall i \neq j \\ 0 & \text{otherwise} \end{cases}$$
(12.4.1)

$$p_j(t+1) = p_j(t) + B(y_j(t) - p_j(t))$$
(12.4.2)

$$b_j = C(1/M - p_j)$$
 (12.4.3)

$$z_{j} = \begin{cases} 1 & \text{if } \|\boldsymbol{w}_{j} - \boldsymbol{x}\|^{2} - b_{j} \le \|\boldsymbol{w}_{i} - \boldsymbol{x}\|^{2} - b_{i} \forall i \neq j \\ 0 & \text{otherwise} \end{cases}$$
(12.4.4)

$$w_{j}(t+1) = w_{j}(t) + \eta(t)(x - w_{j}(t))z_{j}$$
(12.4.5)

Figure 8. Probability density function showing regions of equal area.

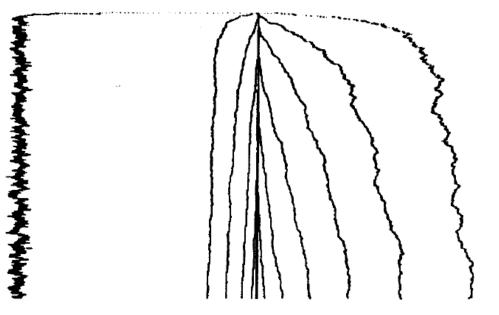


Figure 9. Kohonen learning. A = 0.03 for 16000 iterations.

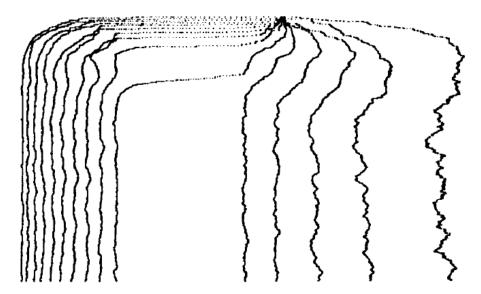


Figure 10. Conscience learning. A = 0.03 for 16000 iterations.

12.5. K-means Clustering

- Vector Quantization
 - 24bits/pixel (16M colors) \Rightarrow 8 bits/pixel (256 colors)
 - Uniform quantizing ($[0, 65535] \rightarrow color 0$) : wastes the color map
 - Find k reference vectors which best represent the data
- Given $X = \{x^t\}$, find k reference vectors $m_j, j = 1, 2, ..., k$

$$||\boldsymbol{x}^t - \boldsymbol{m}_i|| = \min_j ||\boldsymbol{x}^t - \boldsymbol{m}_j||$$

$$E(\{\boldsymbol{m}_i\}|X) = \sum_t \sum_i b_i^t ||\boldsymbol{x}^t - \boldsymbol{m}_i||^2$$

$$b_i^t = \begin{cases} 1 & \text{if } \|\boldsymbol{x}^t - \boldsymbol{m}_i\| = \min_j \|\boldsymbol{x}^t - \boldsymbol{m}_j\| \\ 0 & \text{otherwise} \end{cases}$$

- k means Clustering Algorithm
- ① Assignment Step
 - 모든 $x^t \in X$ 에 대하여 $b_i^t \leftarrow \begin{cases} 1 & \text{if } ||x^t - m_i|| = \min_j ||x^t - m_j|| \\ 0 & \text{otherwise} \end{cases}$ (12.5.4) 에 따라 b_i^t 를 할당한다. 그 결과 클러스터 S_i 는 $S_i = \{x^t : ||x^t - m_i|| \le ||x^t - m_j|| \forall j, 1 \le j \le k\}$ (12.5.5) 와 같이 구성된다.

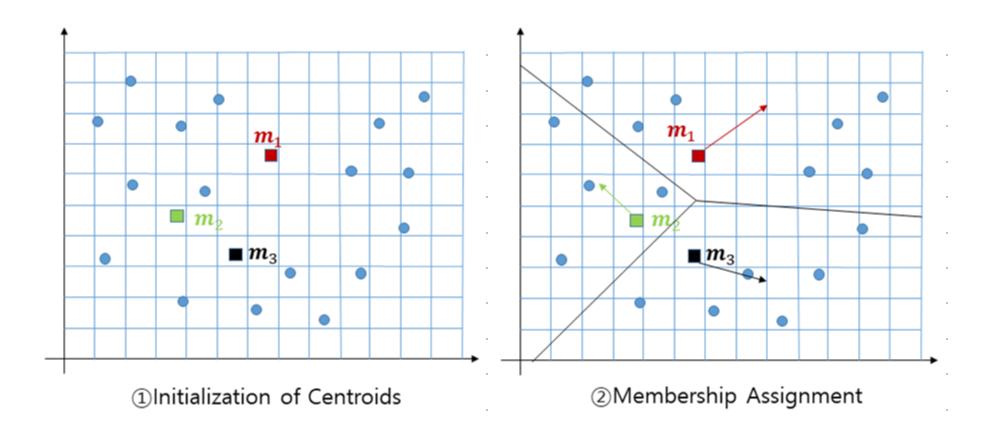
① Update Step

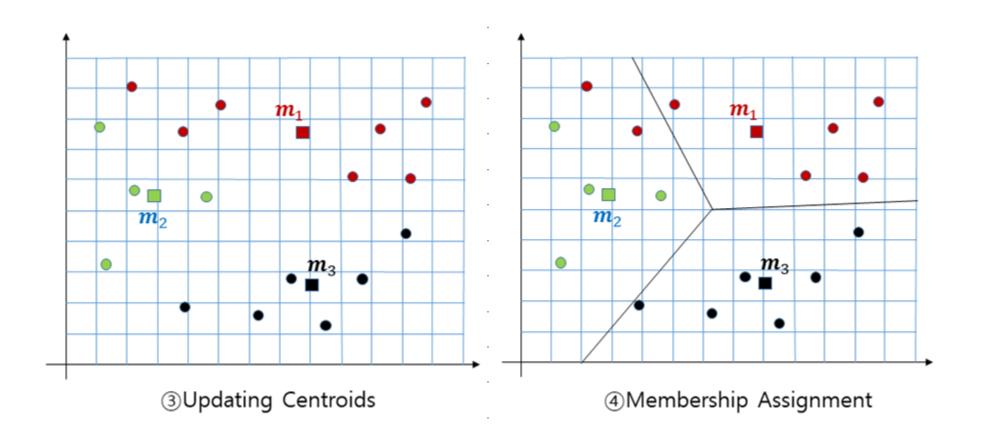
모든 $m_i (i=1,2,,k)$ 에	대하여		 	
		$\sum b_i^t x^t$	 	
		$m_i \leftarrow \frac{\overline{t}}{\sum_{i t} t}$	 	(12.5.6)
		i		

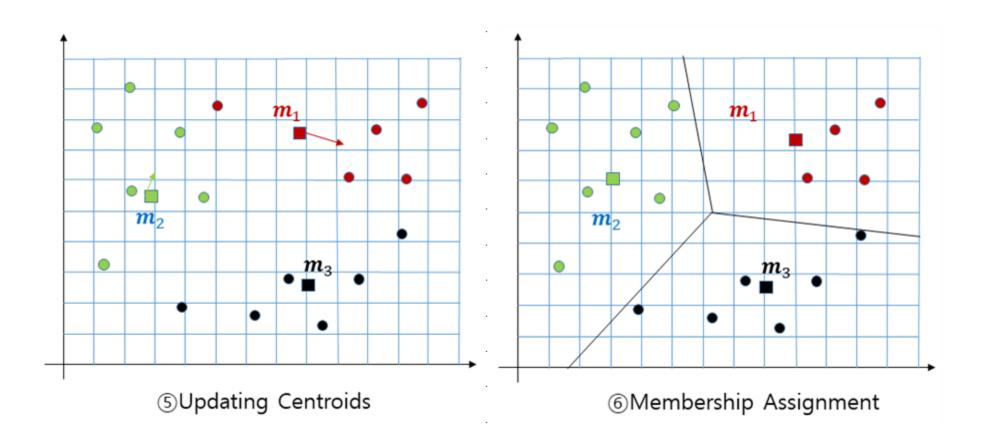
k -평균 알고리즘 $b_i^t \leftarrow \begin{cases} 1 & \text{if } x^t - m_i = \min_j x^t - m_j \\ 0 & \text{otherwise} \end{cases}$	(12.5.4)
① 파라미터 설정 $\sum b_i^t x^t$	
k 값을 결정한다. $m_i \leftarrow \frac{t}{\sum b_i^t}$	(12.5.6)
②·초기화···································	· ·
k 클러스터의 중심 기준벡터 $m_j(j=1,2,,k)$ 를 임의로 초기화 한다.	
③ 할당 단계	
모든 $oldsymbol{x}^t \in X$ 에 대하여 $oldsymbol{b}_i^t$ 를 식 (12.5.4)에 따라 할당한다.	
④ 갱신 단계	
모든 $m_i(i=1,2,,k)$ 에 대하여 식 (12.5.6)에 따라 m_i 를 갱신한다.	
⑤ 종료/갱신	
b [‡] 의 변동이 없으면 종료한다. 그렇지 않으면, ③부터 반복한다.	

L

참조: 오차함수 최적화와
$$m_i$$
 갱신
식 (12.5.6)과 같이 $m_i \equiv$ 변경하는 것이 식 (12.5.2)로 주어진 오차함수를 최적
화 시키는 지에 대하여 알아보자. 식 (12.5.2)로 주어진 오차함수를 다시 적으면
 $E(\{m_i\}|X) = \sum_t \sum_i b_i^t ||x^t - m_i||^2 = \sum_t \sum_i b_i^t \sum_j (x_j^t - m_{ij})^2$ (12.5.7)
이 된다. 위 식을 m_{ij} 에 대하여 편미분을 하면
 $\frac{\partial E(\{m_i\}|X)}{\partial m_{ij}} = \frac{\partial [\sum_t \sum_j b_i^t \sum_j (x_j^t - m_{ij})^2]}{\partial m_{ij}} = \sum_t 2b_i^t (x_j^t - m_{ij})$ (12.5.8)
이 된다. 이 편미분이 0이 되는 조건에 의해
 $m_{ij} = \frac{\sum_t b_i^t x_j^t}{\sum_i b_i^t}$ (12.5.9)
을 얻게 되며, 이를 벡터로 표현하면 식 (12.5.6)이 된다.







12.6. Evaluation

Evaluation (or "validation") of clustering results is as difficult as the clustering itself. Popular approaches involve "*internal*" evaluation, where the clustering is summarized to a single quality score, "*external*" evaluation, where the clustering is compared to an existing "ground truth" classification, "*manual*" evaluation by a human expert, and "*indirect*" evaluation by evaluating the utility of the clustering in its intended application.

Internal evaluation

Davies–Bouldin index

$$DB = \frac{1}{k} \sum_{i=1}^{k} \max_{j \neq i} \left(\frac{\mu_i + \mu_j}{d(\boldsymbol{m}_i, \boldsymbol{m}_j)} \right)$$

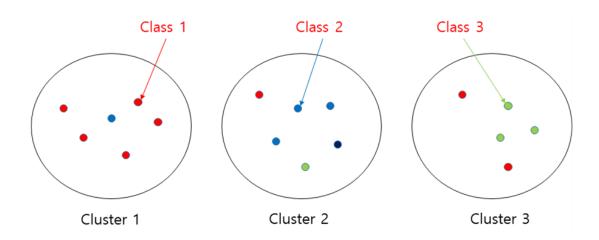
Dunn index

$$D = \frac{\min_{1 \le i < j \le k} d(i,j)}{\max_{1 \le i \le k} d'(i)}$$

External evaluation

Purity

$$Purity(S_i) = \frac{1}{n_i} max_j(n_{ij}), j \in C$$



$$\begin{aligned} Purity(S_1) &= \frac{1}{6}max(5,1,0) = \frac{5}{6} \\ Purity(S_2) &= \frac{1}{6}max(1,4,1) = \frac{4}{6} \\ Purity(S_3) &= \frac{1}{5}max(2,0,3) = \frac{3}{5} \end{aligned}$$

.

. .

.