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10.1. Dimensionality Reduction 

• High dimensional data - images, bag-of-words, protein-expressions etc.

• Data will typically lie close to a much lower dimensional space, provided underlying
structure of data.

• What 
• Given d-dimensional data, reduce it to k-dimensional data, k < d, while 

preserving as much information as possible

• Why?
• Time complexity: Less computation 
• Space complexity: Less parameters 
• The cost of observing the feature
• Simpler models: robust on small datasets 
• More interpretable; simpler explanation 
• Data visualization if plotted in 2 or 3 dimensions 



Feature Selection vs. Extraction 

• Feature selection 
• Choose k<d important features, ignoring the remaining (d-k ) features 

• Subset selection algorithms 

• Feature extraction 
• Project the original d dimensions to new k<d dimensions

• Principal component analysis (PCA)..chap. 10 

• Linear discriminant analysis (LDA)..chap. 3 

• Factor analysis (FA) 



Feature Selection 

• 2𝑑 possible subset selection from d features → cannot enumerate all of them

• Forward Search (set of features F)
• Initial set of features ∅
• Find the best new feature
• Add 𝑥𝑗 to F if                              else stop

• Backward Search 
• Start with all features
• Remove one at each iteration, if possible

• Floating Search
• Add some features and remove other features at each iteration



10.2. Principal Components Analysis (PCA)

• Idea:
• Project d-dimensional data points onto lower dimensional space while

preserving as much information as possible

• In particular, choose projection that minimizes the squared error in
reconstructing original data

• Given d-dimensional data x, learns the top m-dimensions where
• the dimensions are orthogonal

• the reconstructed data as a linear combination of the top m-dimensions 
minimizes reconstruction error (sum of squared errors)



Maximum co-variance and orthogonality

• Select a direction in m-dimensional space along which the variance
in x is maximized.

• Find another direction along which variance is maximised, but
restrict the search to all directions orthonormal to all previous
selected directions.

• Repeat this until m vectors are selected.



10.3. Eigenstructure of Principal Component Analysis
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10.4. Understanding PCA 



The Size of Reduced Dimension  

• Larger eigenvalues contribute more to variance of 𝒛

① POV(Proportion of Variance)
• Rule of thumb : POV>0.9

② Stop at elbow of 𝜆𝑘
③ Keep the eigenvectors whose eigenvalues are larger than 

average of eigenvalue



Reducing the dimension of digits

Top row : a selection of the digit 5 taken from the database of 892 examples.
Plotted beneath each digit is the reconstruction using 100, 30 and 5 eigenvectors
(from top to bottom). Note how the reconstructions for fewer eigenvectors express
less variability from each other, and resemble more a mean 5 digit.





Reducing the dimension of faces



Reducing the dimension of faces


