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10.1. Dimensionality Reduction

Data is often high dimensional - images, bag-of-word descriptions, gene-expressions
etc. Provided there is some ‘structure’, data will typically lie close to a much lower
dimensional ‘manifold’.

 What

* Given d input variables (a-dimensional data), reduce it to & input variables (-
dimensional data), £ < @, without loss of information

« Why

« Reduces time complexity: Less computation
Reduces space complexity: Less parameters
Saves the cost of observing the feature
Simpler models are more robust on small datasets
More interpretable; simpler explanation

Data visualization (structure, groups, outliers, etc.) easy if plotted in 2 or 3
dimensions



Feature Selection vs. Extraction

* Feature selection
« Choose k<d important features, ignoring the remaining (d-k) features
 Subset selection algorithms

e Feature extraction

 Project the original xi;, /=7,...,d dimensions to new k<d dimensions, z,
J=1..,k

* Principal component analysis (PCA), linear discriminant analysis (LDA),
factor analysis (FA)



Subset Selection

# of subset selection of d features = 24
+« Cannot enumerate all of them!

Forward search: Add the best feature at each step iteratively
» Set of features F initially &
» At each iteration, find the best new feature
e j =argmin, Err(F U X))
« Add X to F if Err(F U X;) < Err(F) else stop

» Requires O(d?) times of training and testing
« Optimal?

Sequential backward selection: Start with all features and
remove one at a time, if possible

Floating search: Add k’ features and remove m’ features at
each step



10.2. Principal Components Analysis (PCA)

¢ |dea:

 Given data points in d-dimensional space, project onto lower dimensional
space while preserving as much information as possible
 E.g., find best planar approximation to 3D data
 E.g., find best planar approximation to 104D data

* In particular, choose projection that minimizes the squared error in
reconstructing original data

 Learned encoding is a linear combination of inputs

* Given d-dimensional data x, learns the top m-dimensions where
* the dimensions are orthogonal

* the re-representational as a linear combination of the top m-dimensions
minimizes reconstruction error (sum of squared errors)



Maximum co-variance and orthogonality

e Select a direction in m-dimensional space along which the variance
IN X IS maximized.

* Find another direction along which variance Is maximised, but
restrict the search to all directions orthonormal to all previous
selected directions.

 Repeat this until m vectors are selected.

PCA of a multivariate Gaussian &

distribution centered at (1,3) with a
standard deviation of 3 in roughly the
» (0.866, 0.5) direction and of 1 in the
W orthogonal direction. The vectors

‘;7:’"? shown are the eigenvectors of the
covariance matrix scaled by the square
root of the corresponding eigenvalue,
and shifted so their tails are at the

. mean.



10.3. Eigenstructure of Principal Component Analysis

Zero - mean random vector :

_ T
X =[X1,X5,+, Xq]

projection unit vector :

w = [ Wy, wa ] and  w] = (wTw)'? =1
Projection :

z=w'x and E[z] = E[WTX] =w' E[x]=0
Variance :
0% = E[zz] - E2[z] = E[(WTX)(XTW)] =w' E[xxT Jw = w! Sw
Correlation Matrix :
S= E[xxT]

The variance of the projection z is a function of the unit vector w

w(wW) = % =w'Sw



If w is a unit vector such that the variance probe y(w) has an extremal value,
for any small perturbation ow of the unit vector w
(W +0w) =y (W)
w(W +ow) = (w + 5W)T S(w +ow) = w! Sw + 2(5W)T Sw + (5W)T Sow
Ignoring the second - order term (5W)T Sow
w(W + ow) = w! Sw + 2(5W)T Sw =y (w) + 2(5w)T Sw
Hence
(ow)' Sw =0
Restriction
W+ ow| = (W + ow) (w +ow) =1
(Sw)' w =0
(W) Sw - A(6w)"w =0 equivalently (sw)' (Sw-Aiw) =0
Eigenvalue Problem Sw = Aw



Eigenvalue Problem Sw; = A4;w;, J=12,..,d

Let the corresponding eigenvalues be arranged in decreasing order

Associated eigenvectors
W =[Wq, W5, Wa,...Wq]
Orthonormality

w{ w; =1(if i=j) and O otherwise W'W =1

Basic data representation

Zj:WEX, J=1,2,...,d : principal component

d

z:[zl,zz,zg,....zd]T =W'x and x=Wz = E _1zjwj

j
Dimensionality Reduction

V4 k V4 d
X = E _ ZJ-WJ- e=X-X = E _ ZjW
j=1 j=k+1

J
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PCA Alaorithm

Algorithm Principal Components Analysis to form an M-dimensional approximation of a dataset
{x"n=1....,N} withdim(x")=D.

1: Find the D x 1 sample mean vector and D x D covariance matrix

N N
1 1
e n =5 n__ no__ T
m—NZx, S—N_IZ:(x m)(x" — m)
n=1 n=1
2: Find the eigenvectors e!,. .., e” of the covariance matrix S, sorted so that the eigenvalue of e is larger than
e’ for i < j. Form the matrix E = [e!,...,e"].

3: The lower dimensional representation of each data point x™ is given by
y" = ET(x" —m)
4: The approximate reconstruction of the original datapoint x™ is
x" ~ m+ Ey"
5: The total squared error over all the training data made by the approximation is

N

D
YT -x)r=(N-1) Y A

n=1 j=M+1

where Aps.1...An are the eigenvalues discarded in the projection.




10.4. Understanding PCA

Define z = W' (x — m)
« W: Columns as eigenvectors of S (estimator to )
« m: Sample mean
e Centers the data at the origin and rotates the axis

X2 Z,




Choosing the Size of Reduced Dimension
S| = Hle A; measures how much Z varies
e Larger eigenvalues contribute more to variance of Z

Proportion of Variance (PoV) explained by k principal
components:

.« POV: AL+ do A+ 4 A
MAXo+ A+ F Ny
* Rule of thumb: stop at PoV > 0.9 ™
Scree graph: plots of 2, vs. k i,
o Stop at elbow :
Only keep the eigenvectors S T

[a) Scree graph for Optdigits

whose eigenvalues are larger T e

than average input variance  ,, |
(i.e. average of eigenvalue)

Eigenvectors

&0

G0

T0



Reducing the dimension of digits

SPSISIASISISISI=|C1S
SPSISISISISISISE=|c]S

Top row : a selection of the digit 5 taken from the database of 892 examples.
Plotted beneath each digit is the reconstruction using 100, 30 and 5 eigenvectors
(from top to bottom). Note how the reconstructions for fewer eigenvectors express
less variability from each other, and resemble more a mean 5 digit.
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Reducing the dimension of faces

Figure : 100 of the 120 training images
(40 people, with 3 images of each
person). Each image consists of

92 x 112 = 10304 non-negative
greyscale pixels. The data is scaled so
that, represented as an image, the
components of each image sum to 1.
The average value of each pixel across
all images is 9.70 x 10~°. This is a
subset of the 400 images in the full
Olivetti Research Face Database




Reducing the dimension of faces

(b)

Figure : (a): SVD reconstruction of the images using a combination of the 49
eigen-images. (b): The eigen-images are found using SVD of the above data and taking
the 49 eigenvectors with largest eigenvalue. The images corresponding to the largest
eigenvalues are contained in the first row, and the next 7 in the roew below, etc.



