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10.1. Dimensionality Reduction 

Data is often high dimensional - images, bag-of-word descriptions, gene-expressions
etc. Provided there is some `structure', data will typically lie close to a much lower
dimensional `manifold’.

• What 
• Given d input variables (d-dimensional data), reduce it to k input variables (k-

dimensional data), k < d, without loss of information

• Why 
• Reduces time complexity: Less computation 
• Reduces space complexity: Less parameters 
• Saves the cost of observing the feature 
• Simpler models are more robust on small datasets 
• More interpretable; simpler explanation 
• Data visualization (structure, groups, outliers, etc.) easy if plotted in 2 or 3 

dimensions 



Feature Selection vs. Extraction 

• Feature selection 
• Choose k<d important features, ignoring the remaining (d-k) features 

• Subset selection algorithms 

• Feature extraction 
• Project the original xi, i=1,…,d dimensions to new k<d dimensions, zj, 

j=1,…,k
• Principal component analysis (PCA), linear discriminant analysis (LDA), 

factor analysis (FA) 



Subset Selection 



10.2. Principal Components Analysis (PCA)

• Idea:
• Given data points in d-dimensional space, project onto lower dimensional 

space while preserving as much information as possible
• E.g., find best planar approximation to 3D data

• E.g., find best planar approximation to 104D data

• In particular, choose projection that minimizes the squared error in 
reconstructing original data

• Learned encoding is a linear combination of inputs

• Given d-dimensional data x, learns the top m-dimensions where
• the dimensions are orthogonal

• the re-representational as a linear combination of the top m-dimensions 
minimizes reconstruction error (sum of squared errors)



Maximum co-variance and orthogonality

• Select a direction in m-dimensional space along which the variance
in x is maximized.

• Find another direction along which variance is maximised, but
restrict the search to all directions orthonormal to all previous
selected directions.

• Repeat this until m vectors are selected.



10.3. Eigenstructure of Principal Component Analysis
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PCA Algorithm 



10.4. Understanding PCA 



Choosing the Size of Reduced Dimension  



Reducing the dimension of digits

Top row : a selection of the digit 5 taken from the database of 892 examples.
Plotted beneath each digit is the reconstruction using 100, 30 and 5 eigenvectors
(from top to bottom). Note how the reconstructions for fewer eigenvectors express
less variability from each other, and resemble more a mean 5 digit.





Reducing the dimension of faces



Reducing the dimension of faces


